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This article explores valid brain electroencephalography (EEG) selection for EEG classification with differ-
ent classifiers, which has been rarely addressed in previous studies and is mostly ignored by existing EEG
processing methods and applications. Importantly, traditional selection methods are not able to select valid
EEG signals for different classifiers. This article focuses on a source control-based valid EEG selection to
reduce the impact of invalid EEG signals and aims to improve EEG-based classification performance for dif-
ferent classifiers. We propose a novel centroid-based EEG selection approach named CenEEGs, which uses
a scale-and-shift-invariance similarity metric to measure similarities of EEG signals and then applies a glob-
ally optimal centroid strategy to select valid EEG signals with respect to a similarity threshold. A detailed
comparison with several state-of-the-art time series selection methods by using standard criteria on 8 EEG
datasets demonstrates the efficacy and superiority of CenEEGs for different classifiers.
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1 INTRODUCTION

Electroencephalography (EEG) relies on a weak, complex, non-stationary, high-dimensional, and
low signal-to-noise ratio bioelectrical potentials generated by numbers of neurons on cerebral
cortex [21]. Since these potentials reflect brain functions, EEG is widely applied in two fields.
(1) Cerebral disorder or disease diagnosis through classification techniques, such as diagnosing
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Fig. 1. The process of EEG analysis (Step 1: The original EEG signals that contain invalid EEG recordings, e.g.,

the light blue and the red recordings. They are directly used by researchers to study EEG-related problems

and seldom being pre-selected before analyzing. Step 2: The original EEG signals are pre-processed through

selecting relatively valid ones for subsequent studies as Step 3 and Step 4 illustrate. Step 3 and Step 4: With

such pre-selected EEG signals, such following-up procedures are performed with less invalid EEG signals,

enhancing and improving the performances).

Alzheimer’s disease (AD) [46], epileptic seizures [24], strokes [1], amyotrophic lateral sclerosis
(ALS) [19], and so on [5, 11]; (2) Brain-Computer Interface (BCI) for rehabilitation [3]. In these ap-
plications, EEG artifact removal or denoising, feature extraction, and EEG classification [9, 10] are
widely studied, see Step 3 and Step 4 in Figure 1. In practice, EEG artifact removal or denoising aims
to remove interference EEG segments such as eye movements or eye blinks embedded in original
EEG signals, to provide clean EEG for EEG feature extraction and selection. Further, different with
EEG signal selection that is from the view of source control of all EEG signals, this step mainly
focuses on EEG segment processing that is from the view of an individual EEG signal. Then, EEG
features are extracted out by feature extraction algorithms to represent original EEG signals, with
which the dimension of EEG signals can be significantly reduced and the original EEG signals
can be represented by several distinct features. Namely, the best features are selected from such
extracted features to finally represent original EEG signals. With such selected EEG features, classi-
fiers can learn a model to classify EEG signals into different classes according to their features, and
according to the classification results, the cerebral disorders could be diagnosed, and real-world
tools such as wheelchair and robotic arms in BCI can be controlled by disabled people according to
the predictive EEG classes. Clearly, the subsequent processes for EEG signals are determined by the
prior processing and it obviously indicates the importance of EEG selection on such following pro-
cesses in Figure 1. In other words, analyzing performances for EEG artifact removal, feature extrac-
tion/selection and classification rely on the valid EEG signals, but in existing studies, they directly
applied to raw EEG data, ignoring the impact of invalid EEG signals on the applications. In other
words, valid EEG selection was ignored by most EEG researchers, who skipped this important step
and immediately proceeded to subsequent steps such as feature selection [42, 51] and classification
[41]) (corresponding to Step 3 and 4; see Figure 1 for an illustration). However, this ignorance of
valid EEG selection likely limits and degrades the performance of follow-up analyses [16]. Invalid
EEG1 significantly degrades the diagnosis and detection accuracy due to the features of invalid

1Invalid EEG singles, strictly speaking, are those bioelectrical potentials stimulated by non-target cerebral activities or
contaminated by noises. For example, when recording the motor imagery EEG of hands and legs (the target activities),
the subject imagines the tongue rolls, then the generated potentials are invalid EEG signals. Further, the interferences
from environmental noises, such as noise of EEG recording equipment, and so on, can cause invalid EEG even though the
subjects are simulating target cerebral activities. Correspondingly, the valid EEG signals are strictly those potentials from
target cerebral activities without noise interferences.
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EEG mixed in valid ones. Especially, more invalid EEG signals exist in those EEG signals recorded
from patients suffering from cerebral diseases that are due to the uncontrolled cerebral activities in
such patients’ brain. Hence, it is a difficult task for neurologists to accurately analyze and diagnose
the diseases with such raw EEG signals. A necessary step is to pre-process raw EEG signals (from
the view of source control) to reduce the degradation of invalid EEG on classification performance
in EEG applications. Therefore, we in this article explored valid EEG selection from the view of
source control2 to enhance or improve EEG classifications and also propose a novel method for it.

1.1 Motivation

In practice, many invalid EEG signals exist with valid ones, degrading classification accuracy for
EEG applications. Invalid EEG mainly comes from (1) the environmental noises and (2) the non-
target bioelectrical potentials activated by other uncontrolled cerebral activities (especially from
cerebral disorder patients). Valid EEG selection, from the source controlling view, is an important
and necessary step in EEG analysis, which provides more target EEG for follow-up processes such
as artifact removal, feature selection and classification, and so on. Unfortunately, to the best of
our knowledge, EEG selection is rarely addressed by EEG researches in previous studies, and most
researchers skipped this source controlling step and directly proceeded to the follow-up analyses,
as illustrated in Figure 1. Consequently, these direct analyses performed over raw EEG signals
seem to result in relatively poor classification and limit their applications in real world such as in
BCI-based applications.

EEG, as one type of potentials with non-stationary, non-linear, high-dimensional features, con-
tains not only frequency information but also spatial information (i.e., correlations among multiple
EEG channels, which means that several EEG channels together rather than a single one can reflect
the cerebral activity. In other words, for some specific cerebral activities, multiple channels are re-
quired to record EEG signals from different cortex area. So these EEG channels have correlations
with each other.) [51], which make it a challenging task to select valid EEG. Furthermore, the phase
shift and amplitude scale of EEG signals also make it another challenge to select valid EEG from
originally recorded EEG. Fortunately, time series selection techniques may be considered as one
way to solve such problems, since EEG signal is regarded as one special time series with specific
characteristics. In recent decades, several time series selection methods have been proposed for
time series classification, but these are only suitable for specified classifiers. For example, the con-
densation methods are suitable to reduce training set for SVM and edition methods are for Nearest
Neighbor (NN) classifiers [34], and the hybrid methods are highly adoptable to kNN classifiers as
well [20].

In order to reduce the impact of invalid EEG signals on the follow-up EEG analyses and en-
hance the classification performance for different classifiers, this article proposes a novel centroid-
inspired approach to select valid EEG signals from the original EEG signals (which is regarded as
the source control for EEG analyses), which is based on a scaling and shifting invariant similarity
metric [13].

1.2 Contributions and Outline

This article explores valid EEG selection for different classifiers and proposes a novel centroid-
based method for valid EEG selection. In detail, this article made such contributions that are high-
lighted as follows.

2Source control in this article is a signal pre-processing methodology that is to prescreen valid EEG signals from “the
original raw EEG signals,” that means original raw EEG recordings are pre-processed before being applied in the subsequent
analyses such as denoising, artifact removal, feature extraction, classification, and so on. In other words, source control
aims to enhance and improve the performance through reducing invalid EEG signals and selecting more valid ones from
the original raw EEG signals.
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—Aiming at reducing the degradation of invalid EEG signals on EEG classification, a source
control-based selection is explored in this article. To the best of our knowledge, it is seldom
addressed in previous researches.

—A centroid-based EEG selection approach is proposed in this article, which we call CenEEGs,
which is suitable for different classifiers.

—Besides, a scale-and-shift-invariance distance metric is utilized to measure the similarities
among EEG signals. Then, an EEG centroid extraction function is proposed to search the
most representative EEG centroid for valid EEG selection based on their similarities, which
is also globally optimal.

—The efficacy of CenEEGs to improve the classification performance for several classifiers is
demonstrated through a detailed experimentation by comparing with several state-of-the-
art time series selection methods on 8 EEG datasets. The results clearly show that CenEEGs
not only improves the classification accuracy compared with raw EEG signals, but also
outperforms those state-of-the-art time series selection methods.

The reminder of this article is organized as follows. In Section 2, the related works on EEG time
series selection are presented. After that, the proposed method is introduced in detail in Section 3,
including the introduction of similarity metric and the centroid-based CenEEGs approach. Subse-
quently, EEG datasets, criteria and baselines to evaluate the efficacy of CenEEGs are outlined in
Section 4 respectively. Finally, conclusions and some directions for the future work are summarized
in Section 5.

2 RELATED WORKS

EEG selection aims to select a subset of relevant EEG signals from the original EEG for classifiers
and remove noisy/invalid EEG signals, though without creating new artificial data [25]. Unfortu-
nately, only very few studies have explored possibilities for valid EEG selection. As EEG data are
a specific kind of time series data, EEG selection may be performed by time series selection ap-
proaches. In practice, time series selection is broadly used in time series prediction [44], regression
[4, 43] and classification [52]. Traditionally, the most widely used approaches to select time series
can be categorized into condensation, edition, and hybrid methods that include both condensation
and edition [7, 20, 29, 47, 53].

In detail, condensation algorithms condense (or remove) internal time series data while main-
taining border time series data that are close to the threshold, as these are believed to have stronger
impact on classification performance than internal time series data. The edition algorithms use
the opposite strategy to condensation ones. In edition methods, the border time series data are
regarded as noises and are removed to produce a smoother boundary, while internal time series
data are maintained, also with the aim to improve the generalization accuracy for testing time se-
ries. The hybrid algorithms contain both strategies of condensation and edition methods. In detail,
hybrid methods aim to find the smallest subset that satisfies the internal and border time series re-
moval so as to achieve generalization accuracy in testing time series [20, 29, 34, 53]. Although they
all have their own strengths and have been widely researched and applied, such instance selection
methods seem more suitable for specific classifiers, as indicated in [34] that “condensation meth-
ods are probably suitable for reduction for training SVM, while edition strategies are more suitable
for the scene of using k-Nearest Neighbors (kNN) classifier.” Furthermore, García et al. [20] also
introduced that kNN classifier is highly adaptable to hybrid methods. In other words, these meth-
ods may limit the classification-based EEG applications in real world (i.e., BCI or cerebral disease
diagnosis), since they rely on a specific classifier (i.e., kNN or SVM) and may not perform well
when other classifiers (i.e., st-TSC [32], RPCD [40], COTE [6], or SAX-SEQL [37]) are adopted to
classify EEG signals.
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Additionally, some newly state-of-the-art algorithms are presented to select time series or in-
stances such as MLIS [36] and NNGIR [50], but they are designed for kNN classifier, not for differ-
ent classifiers. Moreover, some spectral methods are merged to represent signals and then classify,
such as [2, 14, 35], but their performance is probably limited because they belong to frequency do-
main analysis but EEG classification also implicitly embeds spatial information (i.e., correlations
among multiple EEG channels). Besides, the spectral methods’ performance seems to be influenced
by the length of wavelet time window. In order to broaden the applications for different classifiers
without losing temporal (e.g., time, frequency) or spatial information (e.g., channel correlation)
of EEG recordings, weighted Naïve Bayes-based selection methods [26, 48] have recently been
proposed, and have shown to yield excellent performance for different classifiers. However, the
Naïve Bayes-based methods split the original data into two parts, using one part to build weighted
Bayes network and the other part to test the network; hence, it may contain invalid time series in
training part (i.e., building weighted Bayes network) to degrade the Bayes network and affect the
time series selection for testing data. Moreover, the selection results are also sensitive to weighted
Naïve Bayes constructed by the training time series.

In the present article, we also focus on this kind of strategy for EEG selection for different
classifiers. Thereafter, we proposed a novel centroid-based approach to select valid EEG signals
with a scaling and shifting invariant distance metric [13], which is suitable for different classifiers
such SVM, shapelet-based classifier (i.e., st-TSC [32]), distance-based classifier (i.e., RPCD [40]),
ensemble-based classifier (i.e., COTE [6]), and subsequence-based classifier (i.e., SAX-SEQL [37]).

3 CENTROID-BASED VALID EEG SELECTION

Invalid EEG signals degrade the EEG analysis performance, especially at the stage of classifying
EEG signals. Moreover, most EEG studies analyze original EEG data without considering the im-
pact of invalid EEG signals, thereby skipping the important source control pre-processing of EEG
selection. Consequently, this article proposes an approach to select valid EEG signals so as to re-
duce the impact of invalid ones on EEG classification.

3.1 EEG Similarity Metric

Recently, various similarity measures for time series have been investigated and widely applied.
However, as a specific time series, conventional similarity measures such as Euclidean Distance
(ED) [18], Dynamic Time Warping (DTW) [27, 39], and Hausdorff Distance (HD)[45] are not suit-
able for EEG similarity [16]. As introduced above, EEG is weak, complex, non-stationary, high-
dimensional, and high-vibration, and it probably has different distributions from different subjects
during several recording sessions. Two similar EEG signals with scaled amplitude and shifted phase
should be regarded as similar, whereas ED, DTW, and HD all evaluate them to be dissimilar. ED
cannot capture flexible similarity of EEG signals, since it requires the same length of EEG and is
sensitive to noises and outliers. DTW concentrates too much on minimizing the accumulation of
all local distances between adjacent points of vibrating EEG, and DTW does not work well when
signals are sampled less frequently [17]. HD is sensitive to outliers [8, 45] and it transforms EEG
signals to arbitrary point sets, and hence it does not consider the point orders of EEG signals.
Namely, HD is solely based on NN distances between points in EEG trials. It is possible for two
dissimilar EEG trials to have small HD. In this article, we utilized a scale-and-shift-invariance met-
ric [13] to measure the similarities among EEG signals. This similarity metric contains scale and
shift parameters, so it can better measure similarities of EEG signals with different amplitudes and
phases shifts. Then, this metric contributes to EEG similarities for the proposed centroid-based
EEG selection method. Besides, the comparison of such distance measures is also illustrated in
Figure 2, which indicates the superiority of the proposed EEG similarity measure over the widely
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Fig. 2. An illustration of distance measures for EEG similarities. The red and blue respectively denote two-

class EEG signals activated by two corresponding cerebral stimulations: moving a cursor up and moving a

cursor down. Every class contains 4 trials with length of 5,376.

used ED, DTW, and HD, since the proposed measure succeeds measuring the EEG similarities and
classifying them into right classes based on their similarities.

Mathematically, given two EEG signals ex and ey , the similarity d (ex , ey ) between them is de-
fined by the following equation:

d (ex , ey ) = min
α,s

‖ ex − αey (s ) ‖
‖ ex ‖

, (1)

whereα and ey (s ) denote the scaling coefficient and the shifted EEG of ey with s points, respectively.
This similarity metric aims to find the optimal scaling coefficient α and the shifting length s for
two EEG signals.

To obtain the optimally shifted EEG signal ey (s ) by s points. We applied cross correlation [15]
to compute it. Give two EEG signals ex = (ex1 , ex2 , . . . , exm

) and ey = (ey1 , ey2 , . . . , eym
), their cross

correlation is computed by doing the point-to-point inner product in a way that keeps ey static
and slides ex along with ey , see the following equation:

CCτ (ex , ey ) = Rτ (ex , ey ) =
m−|τ |∑

k=1

exk
· eyk
, (2)

where τ = (−m, . . . , 0, 1, . . . ,m) denotes the shift.
According to all the potential shifting sequences, the cross-correlation sequence CCs (ex , ey ) =

(c1, . . . , cs ) with length of 2m − 1 is defined as

CCs (ex , ey ) = Rs−m (ex , ey ) = Rτ (ex , ey ), (3)

where s ∈ {1, 2, . . . , 2m − 1}, and Rs−m (ex , ey ) is defined by the following equation:

Rτ (ex , ey ) =

{∑m−τ
k=1 ek+τ · ek , τ ≥ 0,

R−τ (ey , ex ), τ < 0,
(4)

where τ = s −m. Cross correlation aims to search the optimal location of s that maximizes
CCs (ex , ey ) between ex and ey . Moreover, we also exploited z-normalization to normalize
CCs (ex , ey ), see the following equation:

zCCs (ex , ey ) =
CCs (ex , ey )√

R0 (ex , ex ) · R0 (ey , ey )
. (5)

Correspondingly, the optimal shift s is then given as follows:

s = arg max
s

CCs (ex , ey )√
R0 (ex , ex ) · R0 (ey , ey )

. (6)

In the meantime, Algorithm 1 indicates the computation of shifted EEG.
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ALGORITHM 1: ey (s ) = Shi f t (ex , ey )

Input: ex , ey , two EEG signals.
Output: ey (s ) , the shifted EEG signal.

1 Compute CCs (ex , ey ) = IFFT (FFT (ex ) ∗ FFT (ey ))[15];

2 z-normalize CCs (ex , ey ): zCCs (ex , ey ) =
CCs (ex ,ey )

| |ex | | | |ey | | ;

3 s = arg max
s

zCCs ;

4 shift τ = s −m;
5 if τ ≥ 0 then

6 ey (s ) = [zeros (1,τ ), ey (1 : end − τ )];
7 end

8 else

9 ey (s ) = [ej (1 − τ : end ), zeros (1,−τ )];
10 end

11 return ey (s ) ;

When an EEG ey is shifted by s , optimal α can be computed with a closed-form expression
‖ex−αey (s ) ‖2
‖ex ‖2 , which is a convex function of α . Therefore, the optimal α in Equation (1) can be com-

puted by setting
∂d (ex ,ey )

∂α
= 0, see the following equation in detail:

α =
eT

x ey (s )

‖ ey (s ) ‖2
. (7)

3.2 EEG Centroid Extraction

In order to select valid EEG signals, we proposed a novel approach to extract the reference sequence
as the centroid, with which the raw EEG signals can be pre-processed. However, it is a challenging
task to extract an optimal centroid.

To the best of our knowledge, the easiest way to find a centroid sequence to represent the set
of candidate EEG signals is k-means, which computes the mean coordinates of all corresponding
coordinates in all candidate EEGs. However, this kind of methods cannot obtain the most meaning-
ful information of EEG signals, especially when scale and shift exist among EEG signals. Namely,
such methods as k-means search EEG centroid just considering the corresponding coordinate of
EEG signals rather than the flexible similarity of EEG. As we introduced before, a wide range of
similarity-based methods are applied to measure EEG time series and assist to search the centroid
sequence. However, the characteristics of the problem addressed in the article make the setting
somewhat different with those based on common metrics, such as Euclidean, DTW, or HD. Again,
this kind of similarity metrics are inappropriate in our case: (1) If two EEG signals have similar
shape but different amplitudes, they should be regarded as similar. Thus, scaling EEG signals on
the y-axis should not change the similarity; (2) meanwhile, if the shapes of two EEG signals are
similar, even shifted on x-axis, it should not change their similarity [13]. To avoid the shortcom-
ing of such similarity-based methods for EEG centroid extraction, we proposed a method that
transforms the centroid computation to an optimization problem that aims to find a minimizer of
the sum of squared distances to all EEG signals. Given n EEG signals E = (e1, . . . , en )T , CenEEGs
tries to find an optimal centroid c for EEG selection that minimizes the function O defined by the
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following equation:

O =
∑
ei ∈S

d (ei , c )2, (8)

where S denotes the set of selected EEG signals based on the centroid. Therefore, the centroid c of
selected EEG signals is the minimizer of the sum of d≤δ (ei , c )2 for all ei ∈ S such that d ≤ δ , where
δ is the similarity threshold and those EEG signals satisfy the threshold can be considered as the
valid ones and then added into S . Mathematically,

c∗ = arg min
c

∑
ei ∈S

d≤δ (ei , c )2. (9)

With Equation (9), CenEEGs requires many iterative runs until it converges. In order to find the
optimal centroid efficiently, we solve the minimization problem based on its closed form.

Proposition 3.1. The minimizer of centroid function c∗ = arg minc
∑

ei ∈S d (ei , c )2 can be

rewritten equivalently as c∗ = arg minc
cT U c
‖c ‖2 .

Proof. Recall Equations (1) and (9), then combining them,

c∗ = arg min
c

∑
ei ∈S

min
α,s

‖ c − αei (s ) ‖2

‖ c ‖2 . (10)

Based on the optimal scaling coefficient α =
eT

x ey (s )

‖ey (s ) ‖2
as well as the optimal shift s , the Equa-

tion (10) can be written as c∗ = arg minc
1
‖c ‖2
∑

ei ∈S ‖ c −
cT ei

‖ei ‖2 ei ‖2. Furthermore, to simplify the

solution function, we transform cT eiei to eie
T
i c (see footnote 3 below3), then c∗ is equivalently

rewritten as

c∗ = arg min
c

1

‖ c ‖2
∑
ei ∈S

������
c −

eie
T
i c

‖ei ‖2
������

2

= arg min
c

1

‖c ‖2
∑
ei ∈S

������
�
�
I −

eie
T
i

‖ei ‖2
�
�
c
������

2

= arg min
c

cT

‖c ‖2
∑
ei ∈S

�
�
I −

eie
T
i

‖ei ‖2
�
�

2

c .

Then, setU =
∑

ei ∈S (I − ei eT
i

‖ei ‖2 )2 and the original minimizer of centroid function is transformed to

c∗ = arg min
c

cTUc

‖ c ‖2 . (11)

�

Moreover, based on [22], the solution of Equation (11) is the eigenvector that corresponds to the
smallest eigenvalue ofU . In other words, when c is transformed through multiplying eigenvectors
of matrix U , the cTUc equals the weighted sum of eigenvalues of matrix U . Consequently, the
solution of Equation (11) is the smallest eigenvalue of U . At last, it is easy to obtain the new

3Obviously, cT ei ei = (cT ei )ei and ei eT
i c = ei (eT

i c ). Since cT and ei are respectively row matrix and column matrix with

same length, the values of cT ei and eT
i c are equal to the same real number, namely, cT ei = eT

i c = a (a is real number).

Consequently, cT ei ei = aei = ei a = ei eT
i c .
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ALGORITHM 2: c∗ = Centroidextraction(E, c )

Input: E = (ei , . . . , en )T
n×m , n ×m EEG signals; δ , the similarity threshold.

Output: c∗, the centroid.
1 E ′ ← [ ];
2 for i = 1 to n do

3 ei ← Shi f t (c, ei );
4 d ← d (ei , c );
5 if d ≤ δ then

6 E ′ ← [E ′; ei ];
7 end

8 end

9 U ← ∑ei ∈E (I − ei eT
i

‖ei ‖2 );

10 c∗ ← Eiдenvector (U , thesmallestone );

centroid c∗ by finding the smallest eigenvector ofU . Meanwhile, Algorithm 2 shows how to extract
the centroid for EEG selection.

3.3 The CenEEGs

The CenEEGs aims to minimize the sum of squared similarities with an iterative refinement proce-
dure. CenEEGs computes EEG centroid effectively with both the scaling and shifting invariances,
and contains the following two main phases: (1) the assignment phase and (2) the refinement phase.
For each iteration, CenEEGs performs these two phases to select EEG signals and update the cen-
troid. In the assignment phase, CenEEGs updates the selected EEG signals through comparing
every EEG trace to the centroid with respect to the similarity threshold. In this phase, CenEEGs
depends on the similarity measure introduced in Section 3.2. In the refinement phase, the centroid
is updated along with the changes of selected EEG candidates by finding the smallest eigenvec-
tor of U , as described in Section 3.3. Finally, CenEEGs repeats these two phases until the optimal
centroid c is searched out and all the EEG signals are evaluated. In detail, Algorithm 3 shows the
process of CenEEGs for EEG selection.

Particularly, since CenEEGs originally begins with an initial EEG signal and then proceeds based
on similarities, iteratively optimizes its objective function to search the optimal centroid sequence.
So its convergence, intuitively, is sensitive to the initialization of centroid [31, 49]. If the centroid
is initialized poorly, the CenEEGs may run very slow. Therefore, in order to decrease the impact of
randomly initializing centroids on EEG selection, we simply use a standardization sequence of all
EEG signals as the initial centroid. Although the centroid sequence is different to the standardized
one, it is intuitively closer to the standardized sequence than a randomly selected one. Meanwhile,
the standardization can successfully reduce outliers in EEG signals. Mathematically, forn-trial EEG
dataset En×m withm samples, its standardization is defined as

E ′T =
ET − μ (ET )

σ (ET )
, (12)

c0 = μ (E ′T ), (13)

where μ is the average of ET , i.e., μ (ET ) = 1
n

∑n
i=1 ei and σ is its standard deviation, i.e., σ (ET ) =

( 1
n

∑n
i=1 (ei − μ )2)

1
2 .
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ALGORITHM 3: CenEEGs

Input: E = (ei , . . . , en )T
n×m , n ×m EEG signals; δ , the similarity threshold.

Output: S , the selected valid EEG signals.

1 Initialize centroid E ′T =
ET −μ (ET )

σ (ET )
and c = μ (E ′T );

2 S ← c;
3 for i = 1 to n do

4 ei ← Shi f t (c, ei );
5 d ← d (ei , c );
6 if d ≤ δ then

7 S ← [S ; ei ];
8 end

9 end

10 repeat

11 S ′ ← S ;
12 c∗ ← centroidextraction(S ′, c ) based on Algorithm 2;
13 for i = 1 to n do

14 d∗ ← d (ei , c
∗);

15 if d∗ ≤ δ then

16 S ← [S ; ei ];
17 end

18 end

19 until S ′ ≡ S ;

To reiterate, CenEEGs begins with the initialization of centroid based on a standardizing strategy
of Equations (12) and (13) (see Line 1). The standardization can reflect the membership of all EEG
signals and reduce the impact of outliers, so it is better than a randomly selected EEG as the
initial centroid. Then the EEG signals based on the initial centroid are shifted (with Algorithm 1;
Line 4) and selected with respect to similarity threshold δ , as described in Lines 3–9. Afterwards,
CenEEGs computes the new centroid based on Algorithm 2 (see Lines 11–12). Once a new centroid
is computed, CenEEGs refines the selected EEG candidates by using the proposed similarity metric
(Equation (1)) as well as δ , as Lines 13–18 show. Finally, CenEEGs iteratively repeats the procedure
(from Line 10 to Line 19) until the selected EEG signals are constant across iterative runs (i.e., cease
changing with iterative runs; see Line 19). In other words, CenEEGs stops until the centroid of
selected EEG signals is fixed or constant.

3.4 Time Complexity of CenEEGs

According to Algorithm 3, CenEEGs begins with the initialization of centroid and then shifts EEG
signals and originally selects EEG signals. In the process (Lines 1–9), it mainly costs O (nm logm)
time for n EEG signals with length of m, since shifting an EEG signal may cost O (m logm) [38].
Afterwards, CenEEGs spends time calculating matrixU and searching for the eigenvector of it. In
detail, CenEEGs uses O (m2) to compute matrix U for one ei (Line 9 in Algorithm 2) and finally
spends O (m3) time searching its eigenvectors [38] (Line 10 in Algorithm 2). Consequently, in the
refinement phase (Lines 11–12 in Algorithm 3), its time complexity is O (max {nm2,m3}). Besides,
CenEEGs selects EEG signals based on their similarities to the centroid as well as the similarity
threshold δ , which takes O (nm) time in assignment phase (Lines 13–18). Overall, the exact time
complexity for one iteration of CenEEGs is O (max {nm,nm2,m3}) (Lines 10–19). In practice, the
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Table 1. EEG Datasets

Dataset Description # of EEG Length # of class
Training data:
testing data

#1 Ia (Traindata_0 + Traindata_1) 268 5,377 2 179:89
#2 Ib (Traindata_0 + Traindata_1) 200 8,065 2 134:66
#3 Traindata_0, Ia + Traindata_0, Ib 235 5,377/8,065 2 157:78
#4 Traindata_1, Ia + Traindata_1, Ib 233 5,377/8,065 2 156:77
#5 Ia + Ib 468 5,377/8,065 4 313:155
#6 III_V_s1 3,488 97 3 2,325:1,163
#7 IV_2a_s1 288 6,887 4 192:96
#8 IV_3_s1 160 4,001 4 107:53

number n of EEG signals is commonly smaller than its length m, i.e., n 
m. Consequently, for
each iteration of CenEEGs, its time complexity is O (m3).

4 EXPERIMENTAL RESULTS

In the section, we will report the results of some experiments designed to evaluate the efficacy of
CenEEGs on different classifiers, which involved comparing it with several time series selection
approaches.

4.1 EEG Datasets

The EEG datasets we tested were slow cortical potentials (SCPs)(i.e., #1–#5), motor imagery
EEG signals (MIs) (i.e., #6–#7), and hand movement EEG signals (HMs) (i.e., #8). The SCPs were
recorded from two subjects, one of which was healthy (Ia) and the other being an ALS patient (Ib).
Meanwhile, MIs were recorded from two healthy subjects, and HMs were also recorded from a
healthy subject. Moreover, the SCP datasets and their detailed descriptions are publicly available
at http://www.bbci.de/competition/ii/, and MIs’ at http://www.bbci.de/competition/iii/, and HMs’
at http://www.bbci.de/competition/iv/. Table 1 shows the 8 EEG datasets. Furthermore, we applied
a Hold-out strategy [28] to set up our experiments in this article. In detail, the original data are
divided into two parts, i.e., training data and testing data with the proportion of 2:1. All the selec-
tion algorithms are applied to training datasets, to select valid EEG trials. Then the selected EEG
trials are used to train classifier. Finally, the testing EEG datasets without selecting through such
selection algorithms are applied to verify the classification performance of classifiers trained by
the selected valid EEG trials.

4.2 Evaluation Methodology

Three criteria, such as rand index (RI), F-score, and Fleiss’ kappa (κ), are used to evaluate the meth-
ods.

(1) Rand Index: RI, also called accuracy, estimates the accuracy of classification with respect to
the correct classes of EEG signals. It reflects the percentage of correct selections of classifer.

RI =
TP +TN

TP +TN + FP + FN
, (14)

where TP , FP , TN , and FN denote the number of true positives, false positives, true negatives,
and false negatives respectively.
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(2) F-score: F-score unequally weighs FP and FN in RI with a scale parameter β ≥ 0 on recall,
commonly β = 1. Mathematically,

F − score = (1 + β2)pr

β2p + r
(15)

where precision p = T P
T P+F P

and recall r = T P
T P+F N

.
(3) Fleiss’ kappa: Fleiss’ kappa (κ) measures the coherence of decision ratings among classes.

κ =
P − Pe

1 − Pe

, (16)

where P = 1
N n (n−1) (

∑N
i=1
∑n

i=1 n
2
i j − Nn), Pe =

∑k
j=1 ( 1

N n

∑N
i=1 ni j )

2. P − Pe reflects the agreement

degree of actually achieved over chance; 1 − Pe indicates the agreement degree of attainable above
chance. N is the number of subjects; n, ratings per subject; k , number of classes.

To the end, a higher RI or F-score, or κ demonstrates a better classification performance.

4.3 Baseline Methods

We compared CenEEGs with seven promising state-of-the-art EEG time series selection methods
for different classifiers, which are briefly introduced as follows.

LRIWNBs [26]: Local recursion instance weighted Naïve Bayes time series selection builds
weighted Naïve Bayes with training time series data of same label, and then recursively modi-
fies the weight with testing time series data of same label to finally produce m time series based
on such modified weighted Bayes. It concentrates on local correlations of training time series to
the testing ones with same label.

GRIWNBs [26]: Global recursion instance weighted Naïve Bayes time series selection constructs
weighted Naïve Bayes with training time series data without considering their labels, then it re-
cursively modifies its weights with all testing time series data. Finally, it selects m nearest time
series. It mainly focuses on global similarities between the whole training time series and the
entire testing ones.

LDWNBs [48]: Local dual weighted Naïve Bayes time series selection firstly weights every time
series based on their similarities and then builds an attributed weighted Naïve Bayes with new
training data with same label. Finally, it selects out m most similar time series from each class
based on the weighted attribute for different classifiers.

GDWNBs [48]: Similarly, global dual weighted Naïve Bayes time series selection also weights
time series based on the similarities and then builds attributed weighted Naïve Bayes without
considering the labels, and finally selects m most similar time series from all classes for different
classifiers.

UU [23]: This instance selection method considers instances uncertainty and utility simultane-
ously. Obviously, it is more difficult for a learning model (i.e., classifier) to identify the class of an
instance with a higher uncertainty to be selected. Subsequently, the utility of an instance provides
updating information for the learning model.

MLIS [36]: Metric learning-based instance selection is just designed for kNN classifier. It selects
instances by using metric learning to transform an input space in a way that the points in same
class are close to each other while points in different classes are separated as far as possible.

NNGIR [50]: Natural neighborhood graph-based instance reduction applies natural neighbor-
hood graph to split original time series into three parts (i.e., noisy instances, border, and internal
instances), and then achieves a subset of time series through removing the noisy data, which is
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Fig. 3. Classification with different classifiers on EEG dataset #1.

reported to increase the reduction rate of original data while enhancing or improving the classifi-
cation accuracy of kNN.

4.4 Classification Performance Analysis

4.4.1 Compared with Selection Methods. To demonstrate the selection capacity of CenEEGs for
different classifiers, we compared it with seven selection methods such as LRIWNBs, GRIWNBs,
LDWNDs, GDWNBs, UU, MLIS, and NNGIR with five classifiers: SVM [12], shapelet/distance-
based (i.e., st-TSC [32]4 and RPCD [40]5), ensemble-based (i.e., COTE [6, 33]6), and structure-based
classifier (i.e., SAX-SEQL [30, 37]7). The classification comparisons on 8 EEG datasets are shown in
Figures 3–10, respectively. Classification with selected EEG trials from training datasets achieved
by selection approaches were conducted 20 times on testing datasets (without selection) for each
classifier, respectively, running by Matlab R2014b, on a Windows 7 machine with 3.20 GHz CPU
and 4 GB memory, and the final results are the average of these 20 operations. Besides, all the
default parameter settings are as same as in corresponding references. The results with five dif-
ferent classifiers (SVM, st-TSC, RPCD, COTE, and SAX-SEQL) on different similarity thresholds
clearly demonstrate that CenEEGs outperforms the other 7 time series selection methods on all 8

4st-TSC: Shapelet-transformed time series classifier firstly extracts distinct time series subsequences that can represent
different classes of time series, and then utilizes an optimization function to search such subsequences of fixed length that
can best identify target variables using computing distances of time series to the extracted shapelets.
5RPCD: Recurrence pattern compression distance classifier utilizes recurrence plots as the representation domain to classify
time series based on their similarities measured by Campana-Keogh distance.
6COTE: A classifier with a collective of transform-based ensembles that fuses several different classifiers as one, which
in detail contains shapelet-based classifiers, and spectral-based classifiers. It is an ensemble-based classifier that classifies
time series via using a heterogeneous ensemble on the transformed time series representations.
7SAX-SEQL: An efficient linear classifier that extracts distinct discrete time series subsequences in an all-subsequences
space formed with symbolic aggregate approximation (SAX) [30]. This process smoothes and compresses original time
series to discrete subsequences.
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Fig. 4. Classification with different classifiers on EEG dataset #2.

Fig. 5. Classification with different classifiers on EEG dataset #3.
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Fig. 6. Classification with different classifiers on EEG dataset #4.

Fig. 7. Classification with different classifiers on EEG dataset #5.
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Fig. 8. Classification with different classifiers on EEG dataset #6.

Fig. 9. Classification with different classifiers on EEG dataset #7.
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Fig. 10. Classification with different classifiers on EEG dataset #8.

EEG datasets, since the results of classification accuracy, F-score, and kappa on different similarity
thresholds are all higher than those of LRIWNBs, GRIWNBs, LDWNDs, GDWNBs, UU, MLIS, and
NNGIR. Namely, CenEEGs can select more valid EEG signals so as to reduce the impact of invalid
ones on such classifiers for EEG classification and provide more distinguished EEG features for
the classifiers.

4.4.2 Compared with Raw EEG without Selection. To firmly show the efficacy of CenEEGs for
valid EEG selection, we also computed the classification accuracy improvements of five different
classifiers with selected valid EEG signals by CenEEGs (under best similarity threshold that is
discussed in Section 4.5) over that without selecting (i.e., raw EEG signals). Namely, the improve-
ment is mathematically defined as improvement = Accsel−Accr aw

Accr aw
× 100% (whereAccsel andAccr aw

denote the classification accuracy with selected EEG signals and with non-selected EEG, respec-
tively). The improvements of classification accuracy on 8 EEG datasets are highlighted in boldface
in Table 2, which demonstrates that classifiers achieve higher accuracy with selected valid EEG
by CenEEGs than that without selection (raw EEG signals). Figures 3–10 actually also show the
improvements in classification accuracy of five classifiers with CenEEGs selecting valid EEG sig-
nals. In the meantime, we also compared the selected EEG centroid sequence with raw EEG’s and
it clearly shows that the pattern (shape) of selected EEG are similar to that of raw EEG and the
patterns of different classes are significantly distinct from each other. In other words, the proposed
centroid extraction method can select the majority of valid EEG containing distinctly similar pat-
terns of raw EEG (see Figure 11) (strictly, if the invalid EEG signals that have similar patterns with
valid ones, they would be selected as valid EEG signals). Besides, the classification results of dif-
ferent classifiers in Figures 3–10 also correspondingly show the efficacy of the proposed method
on centroid sequence extraction as well as on EEG classification improvement with selected valid
EEG.
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Table 2. EEG Classification Accuracy Improvements with CenEEGs

Classifier Accuracy #1 #2 #3 #4 #5 #6 #7 #8

SVM

Raw 0.8652 0.5152 0.8590 0.8831 0.7161 0.5418 0.5289 0.5366

Selected 0.9101 0.5909 0.9872 1 0.7484 0.5833 0.5904 0.5753

Improvement (%) 5.19 14.69 14.92 13.24 4.51 7.66 11.63 7.21

st-TSC

Raw 0.8386 0.5138 0.8415 0.8657 0.6752 0.5252 0.5176 0.5211

Selected 0.9008 0.5488 0.9377 0.9538 0.7368 0.5792 0.5788 0.5498

Improvement (%) 7.42 6.81 11.43 10.18 9.12 10.28 11.82 5.51

RPCD

Raw 0.8411 0.5216 0.8537 0.8743 0.6889 0.5389 0.5326 0.5365

Selected 0.8962 0.5982 0.9425 0.9428 0.7566 0.5917 0.5766 0.5592

Improvement (%) 6.55 14.69 10.40 7.83 9.83 9.80 8.26 4.23

COTE

Raw 0.8515 0.5355 0.8678 0.8816 0.7035 0.5435 0.5345 0.5294

Selected 0.9117 0.6088 0.9533 0.9633 0.7564 0.5994 0.5839 0.5561

Improvement (%) 7.07 13.69 9.85 9.27 7.52 10.29 9.24 5.04

SAX-SEQL

Raw 0.8506 0.5268 0.8485 0.8625 0.6857 0.5357 0.5302 0.5241

Selected 0.9023 0.5732 0.9479 0.9144 0.7377 0.5881 0.5789 0.5549

Improvement (%) 6.08 8.81 11.71 6.02 7.58 9.78 9.19 5.88

Average improvement 6.462 11.738 11.662 9.308 7.712 9.562 10.028 5.574

Fig. 11. Centroid sequences of selected EEG and raw EEG.

4.4.3 Compared with Non-selected EEG Centroid. To firmly establish the efficacy of the pro-
posed method for valid EEG selection, we also compared the centroid sequences of selected EEG
signals with non-selected ones in the article. The results are illustrated in Figure 12 and they
clearly show that the centroid sequences of selected EEG signals are significantly different with
those of non-selected ones, which indicates that the non-selected EEG signals have different pat-
terns (shapes) with selected EEG. Furthermore, the amount of non-selected EEG is quite smaller
than selected EEG, which also results in the difference between their patterns of selected EEG and
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Fig. 12. Centroid sequences of selected EEG and non-selected EEG.

non-selected ones. In other words, the minority of non-selected EEG trials containing different
patterns likely degrades the learning performance of classifiers from general patterns of EEG tri-
als and they may eventually influence the classification. Additionally, this fact is also verified by
the comparison between selected EEG and raw ones as shown above. But honestly, some actually
valid EEG signals whose pattern is dissimilar with selected ones may be regarded as invalid EEG
and left in non-selected ones. Similarly, the selected valid EEG signals may be mixed with few
invalid EEG whose pattern is similar to that of selected ones.

4.5 Impact of Similarity Threshold

As we described above, the similarity threshold δ contributes to EEG selection, in that it determines
the number of selected EEG signals. The larger the δ is, the smaller the similarities it requires. The
smaller δ , the fewer EEG trials it selects. Here, we discuss the impact of δ on the classification
results of different selection approaches.

As Figure 13 shows, the amount of selected valid EEG signals decreases with decreases of the
similarity threshold, since a smaller δ requires a higher degree of similarity between two EEG
signals, as it rejects those EEG signals with lower similarities to the centroid. Furthermore, with
smaller δ , CenEEGs selects more specific EEG signals to be included in the centroid, thus providing
classifiers with more specific features. Conversely, a larger δ provides classifiers with more general
features.

Furthermore, Figures 3–10 also clearly show that a moderate δ yields the best classification
results. Since a too small δ requires high similarities between the EEG signals (that not yet selected)
and the centroid, it results in only a few EEG signals being selected with such δ , finally producing
more specific features for classifiers to learn and a more specific model to classify EEG signals.
This is also the reason why the classification decreases in most cases along with relatively smaller
δ . On the contrary, a too large δ selects more EEG signals that contain more invalid EEG signals,
which in turn degrade the feature extraction for classifiers so as to produce a lower classification
result (as indicated by Figures 3–10).
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Fig. 13. Selected EEG signals with different similarity threshold δ .

4.6 Similarity Measure Analysis

CenEEGs applies a scale-and-shift-invariance metric to measure EEG similarities. To demonstrate
the superiority of the similarity metric, we compared it with the classic and widely used similarity
measures: ED [18], DTW [27, 39], and HD [45] for CenEEGs. Figure 14 shows the classification
accuracy of CenEEGs with ED, DTW, HD, and our scaling/shifting invariant similarity metric, with
optimal similarity thresholds as described in Section 4.5. The results clearly demonstrate that the
scaling and shifting invariant similarity metric in CenEEGs is superior over ED, DTW, and HD.

4.7 Execution Time Analysis

To further evaluate the efficacy of CenEEGs, we analyzed execution time of CenEEGs for EEG
selection by comparing CenEEGs with seven state-of-the-art time series selection methods intro-
duced in Section 4.3. The time consumption comparison is illustrated in Figure 15. Although Ce-
nEEGs applies an optimization function to iteratively search the EEG centroid, it still has competi-
tive efficiency compared with all the selection methods. Moreover, compared with its outstanding
performance on improving classification, the runtime costs of CenEEGEs are negligible. Therefore,
CenEEGs can be recommended, as it is acceptable to spend longer time selecting EEG signals for
different classifiers.

5 CONCLUSIONS AND FUTURE WORK

Aiming to reduce the degradation of invalid EEG on classification for EEG-based disease diag-
nosis or BCI research, this article explored several EEG selection methods, and proposed a novel
approach named CenEEGs for EEG selection from the view of source control, which is suitable
for different classifiers. CenEEGs is a centroid-based approach for EEG selection with a scale-and-
shift-invariance similarity metric, which is better than the classic and widely used ED, DTW, and
HD. Subsequently, CenEEGs applies a globally optimized centroid searching strategy to find the
reference sequence based on the similarity metric, and selects valid EEG signals with the centroid
with respect to the similarity threshold. CenEEGs greatly improves the classification accuracy for
classifiers, comparing with that of non-selected EEG signals. Besides, the results of comparing Ce-
nEEGs with several time series selection methods for five classifiers (SVM, st-TSC, RPCD, COTE,
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Fig. 14. Impact of different similarity measures on CenEEGs.
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Fig. 15. Time consumption comparisons on 8 EEG datasets.

and SAX-SEQL) on 8 EEG datasets demonstrated that CenEEGs yielded the best classification per-
formance among seven state-of-the-art time series selection methods (i.e., LRIWNBs, GRIWNBs,
LDWNDs, GDWNBs, UU, MLIS, and NNGIR) with respect to classification accuracy, F-score, and
kappa.

In this work, we investigated the efficacy of CenEEGs through using a particular similarity func-
tion as well as similarity threshold. In the future, it would be an interesting direction to evaluate
the impact of more similarity measures on CenEEGs and to apply more heuristics to determine
a suitable similarity threshold for CenEEGs on different EEG datasets. Furthermore, it is impor-
tant and necessary to enhance the efficiency of CenEEGs computations as well. Apart from that,
we also intend to investigate the capacity of CenEEGs to detect EEG signals represented in other
domains such as wavelet-transformed EEG in the future.
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