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Shapelet-transformed Multi-channel EEG Channel Selection
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This article proposes an approach to select EEG channels based on EEG shapelet transformation,
aiming to reduce the setup time and inconvenience for subjects, and to improve the applicable
performance of Brain-Computer Interfaces (BCIs). In detail, the method selects top-𝑘 EEG channels
by solving a logistic loss-embedded minimization problem with respect to EEG shapelet learn-
ing, hyperplane learning, and EEG channel weight learning simultaneously. Especially, to learn
distinguished EEG shapelets for weighting contributions of each EEG channel to the logistic loss,
EEG shapelet similarity is also minimized during the procedure. Furthermore, the gradient descent
strategy is adopted in the article to solve the non-convex optimization problem, which finally leads
to the algorithm termed StEEGCS. In a result, classification accuracy, with those EEG channels
selected by StEEGCS, is improved compared to that with all EEG channels, and classification time
consumption is reduced as well. Additionally, the comparisons with several state-of-the-art EEG
channel selection methods on several real-world EEG datasets also demonstrates the efficacy and
superiority of StEEGCS.
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1 INTRODUCTION

Electroencephalogram (EEG) signal is widely used to diagnose neuropsychiatric disorders
such as Alzheimers Disease (AD) [6, 24], epileptic seizure [49, 50], stroke [45], and so on
[52], and it also practically applied in Brain-Computer Interfaces (BCIs or Human-Machine
Interfaces (HMIs)) [3, 14, 48], since it can reflect the states and functions of human brain and
even the whole body [16]. For specific functions, they are activated in accordingly specific
positions of brain. For instance, the motor tasks including motor imagery are related to
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motor cortex; the visual-based tasks are located in the primary visual cortex area, and
the frontoparietal regions correspond to decision making [19, 47]. As one type of biological
potentials that can be recorded in a non-invasive way, many channels or electrodes of EEG
acquisition equipment are commonly used in wide applications. Although more channels
theoretically provide more information of brain functions, it correspondingly causes high
dimensional and redundant EEG data, since (1) as introduced above, specific functions are
activated in specific cortex of brain, channels attached on non-specific areas are useless or
redundant for analysis; (2) channels that have small contributions for EEG analysis result in
extra time or space to process and analyze, without significantly improving the performance
of analytical methods such as classification; (3) it increases the inconvenience for subjects
in BCI-based applications when using more EEG channels. Consequently, EEG channel
selection is a necessary process for its follow-up analysis, especially for BCI-based applications
in our daily life, because it can significantly reduce the impact of noisy/redundant channels
and promote the contributions of informative channels for EEG analysis. Particularly, less
but more informative EEG channels are also beneficial to BCI applications. Besides, channel
selection methods can identify informative and suitable recording sites from a large amount
of sites without any prior knowledge of specific cerebral tasks, and reduce the redundancy
of EEG electrodes for EEG signal classification without losing its performance [30]. Figure
1 briefly presents the disadvantages (or problems) of existing researches and applications
using a large number of EEG channels. Besides, it also shows the reasons why we are going
to solve the problem by listing the advantages of EEG channel reduction for its applications.
However, how to perform optimal EEG channel selection is not a trivial task, since manually
selecting EEG channels based on experts’ knowledge does not guarantee to achieve better
results compared to that with all channels [7].
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Fig. 1. The aim of the proposed method. Problem statement presents that most researches used too
many EEG channels/electrodes to record and analyze EEG signals for BCI-based applications (i.e.,
wheelchair navigation, robotic arm control, and EEG-based spelling, and so on), which involves in some
shortcomings; Methodology briefly explains the EEG shapelet-transformed channel selection proposed in
the article, which mainly aims to solve a logistic loss-embedded minimization function to learn distinct
EEG shapelets, hyperplane, and channel weights/contributions simultaneously. In the end, EEG channels
are selected based on the channel weights; Result indicates the selected EEG channels based on their
channel contributions to classification performance, with which the efficacy of BCI-based applications
can be significantly enhanced or improved. The advantages of EEG channel selection are also summarized
in the figure.
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In this article, we handled the challenging task of EEG channel selection for its classification.
In detail, it utilizes EEG shapelets to represent original multi-channel EEG signals and then
weights EEG channel contributions according to their logistic loss in shapelet-transformed
space. Finally, the top-𝑘 EEG channels that contribute more to the logistic loss are selected
out. The procedure of the proposed method is also roughly introduced in Fig. 1. Further,
the contributions of this article are highlighted below.
∙ Shapelet-transformed EEG channel selection is mapped to an minimization objective

function of logistic loss that simultaneously considers distinct EEG shapelets, optimal
EEG channel contributions to classification performance, and good hyperplane for
classifier.
∙ EEG shapelet similarity minimization is also considered to learn distinct EEG shapelets
that highly represent original multi-channel EEG signals.
∙ A novel approach of EEG channel selection is proposed that we call StEEGCS by using

gradient descent to learn EEG shapelets, channel weights, and hyperplane of classifier.
∙ Experimental results compared to five classic and state-of-the-art methods on 10
real-world EEG datasets demonstrate the efficacy and superiority of StEEGCS for
multi-channel EEG channel selection.

The remainder of this article is organized as follows: The related work on EEG channel
selection is reviewed in Section 2. The proposed method is introduced in Section 3, followed
by the selection algorithm StEEGCS in Section 4. Then a detailed experiment is carried out
in Section 5. Finally, a summary of the article is presented in Section 6.

2 RELATED WORK

Brain-Computer Interface (BCI) provides a good way for rehabilitation or a tool to improve
living quality of the disabled by using brain to control wheelchair or robotic arms. In BCI-
based applications, EEG classification plays an important role. Netzer et al [38] proposed an
approach for EEG classification in BCI applications by using core sets that link to BCI with
data summarization. Jafarifarmand [23] proposed a new framework that firstly applied an
artifact rejected common spatial pattern to reduce artifacts, and then utilized a strategy
named self-regulated supervised Gaussian fuzzy adaptive system Art to classify motor
imagery EEG signals. He et al [20] classified motor imagery EEG signals by using a common
Bayesian network constructed by related EEG channels connected by common and varying
edges. Additionally, many state-of-the-art methods for EEG classification are emerged out
recently, such as [1, 17, 27]. But the classification accuracy and efficiency influence the
performance of BCI applications in daily life. To improve the efficiency and accuracy of
EEG classification, EEG channel selection is subsequently adopted. In recent decades, many
studies on EEG channel selection or reduction for BCI are merged out and have achieved a
lot in this field [2]. In this article, we generally categorized these methods into three classes:
common spatial pattern-based methods, entropy/mutual information-based methods, and
classifier-embedded methods.
Common spatial pattern (CSP)-based methods [36, 51] select EEG channels based on

their CSP coefficients without deriving the features corresponding to each EEG channel.
CSP-based channel selection methods consider all the EEG channels and they are highly
sensitive to EEG artifacts, such as electrooculography and electromyography. Furthermore,
as is known to all, CSP-based methods are also suffering from over-fitting. To deal with
this problem, a regularized CSP and a sparse CSP are proposed in [12, 28, 35] and [4],
respectively, both of which aim to remove irrelevant EEG channels and obtain sparse spatial
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filters for EEG classification. They all achieved better performance than the classic CSP,
but they still more or less suffer from overfitting and artifact sensitivity inherited from CSP.

Entropy [40, 41, 48, 53] or mutual information [29, 31] -based methods select EEG channels
by ranking them with entropy or mutual information between EEG channels as well as the
EEG classes. In detail, the most relevant channels according to their entropies or mutual
information to corresponding classes are selected out. These methods are independent from
specific classifiers, but they suffer from low accuracy due to their ignorance of correlations
among different EEG channels [2].

Classifier-embedded EEG channel selection methods such as introduced in [15, 30], which
are mainly based on the classification performance of a classifier to select EEG channels in
a way that the channels with lower contribution to classification are eliminated. Actually,
these classifier-embedded methods probably achieve higher classification accuracy than CSP
or mutual information-based methods, since classifier-embedded channel selection methods
directly consider the classification accuracy into the objective function that reflects the goal
of channel selection for EEG classification. However, they rely on a specific classifier such as
support vector machine (SVM) [4].

Despite those various methods, selecting optimal EEG channels for BCI-based applications
remains a challenging task. Therefore, this article proposed an EEG shapelet-transformed
approach to select EEG channels. In detail, the original EEG data are firstly mapped into
EEG shapelet representation space, and then based on EEG shapelets, those EEG channels
contribute more to the logistic loss are selected. Namely, EEG channels with higher weights
or contributions to the classification are probably selected. Particularly, EEG shapelets
significantly influence the procedure. To improve the efficiency and accuracy for EEG
time series classification, many approaches for shapelet transform, learning, and selection,
especially for time series [11, 21, 22] are proposed in existing studies. Ji et al [26] proposed
an efficient shapelet discovery approach for time series classification based on important data
points. Then, in their work [25], they proposed another algorithm for time series shapelet
selection, which firstly sampled time series and then selected shapelets efficiently based on
the local farthest deviation points (LFDPs) from sampled time series, which reduced time
consumption a lot. Li et al [32] also proposed a shapelet discovery approach for time series
classification that was named Pruning Shapelets with Key Points (PSKP) in a way that
they applied standard deviation to search the key points of time series and then extract time
series shapelets based on such key points. In their work [42], Rakthanmannon et al presented
an efficient scalable algorithm of shapelets discovery for time series classification, which
used SAX [39] strategy to extract shapelets of time series. Grabocka et al [18] exploited an
objective function embedded classification to learn top-𝑘 shapelets for time series. Similar to
[18], our method also utilized the classification-embedded strategy to select EEG channels.
It exploited a logistic loss minimization function to simultaneously learn EEG shapelets,
hyperplane, and EEG channel weights, which built a direct correlation between relevant
EEG channels and classification performance. In other words, the proposed method can help
classifier (e.g., SVM) achieve the highest classification accuracy with selected EEG channels.

3 THE METHOD

In this section, we introduce the proposed method that is transformed to a minimization
objective function with respect to EEG shapelets, channel contributions, and hyperplane
weights. Additionally, the brief procedure of the method is also illustrated in Fig. 1. In detail,
the proposed method selects EEG channels based on EEG channel weights/contributions to
its classification performance. That is to say, to get EEG channel weights is the essential
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goal of the method. To the end, the solution to achieve EEG channel weights is mainly
transformed to EEG shapelet learning in a shapelet representation space. Firstly, a similarity
minimization evaluation is brought in, which aims to learn the most informative and distinct
EEG shapelets to represent original EEG. Then, a hyperplane is required to learn as well,
which aims to achieve a better classifier for EEG classification along with selected EEG
channels. In the method, a logistic loss function simultaneously integrated with distinct EEG
shapelet learning, hyperplane learning, and EEG channel contribution learning is eventually
proposed, and its aim is to minimize the logistic loss (namely, higher classification accuracy).
As the objective function is non-convex and not differentiable, the gradient descent strategy
is adopted to solve it. During the procedure, EEG shapelets, hyperplane, and EEG channel
weights are learnt iteratively with gradient descent strategy until their integrated logistic
loss is locally minimized. Besides, the detailed descriptions for gradient descent-based EEG
shapelet learning, hyperplane learning, and EEG channel weight learning are respectively
presented in detail as follows. Finally, the methodology leads to the algorithm of StEEGCS
for EEG channel selection.

3.1 EEG Shapelet

Shapelet, widely applied in time series data mining [33, 54, 55], is a subsequence from
original time series [37]. Similarly, EEG shapelet is a continuous EEG subsequence that
inherits structures from the original EEG, and it is usually much shorter than the original
EEG. Particularly, EEG shapelet is a small subsequence, as a pattern of original EEG, that
can represent the original EEG data and also able to separate EEG into different groups
based on their distance to EEG shapelets.

Definition 3.1. Given an EEG 𝑒𝑒𝑒 of length 𝑚, a shapelet 𝑠𝑠𝑠𝑖,𝑙 of 𝑒𝑒𝑒 is a continuous subsequence
with length 𝑙 ≤ 𝑚, that starts at position 𝑖. That is, 𝑠𝑠𝑠𝑖,𝑙 = 𝑡𝑖, · · · , 𝑡𝑖+𝑙−1, where 1 ≤ 𝑖 ≤
𝑚− 𝑙 + 1.

3.2 Shapelet-transformed Representation

Given an EEG dataset 𝐸𝐸𝐸 = {𝑒𝑒𝑒𝑖, 𝑒𝑒𝑒2, · · · , 𝑒𝑒𝑒𝑛}𝑁×𝐶×𝑀 , where 𝑒𝑒𝑒𝑖 denotes an EEG signal of
𝐶 channels (i.e., 𝑒𝑒𝑒𝑖 = [𝑒𝑒𝑒𝑖,1, 𝑒𝑒𝑒𝑖,2, · · · , 𝑒𝑒𝑒𝑖,𝑐]𝐶×𝑀 ) with 𝑀 samples for each channel, and a
set of channel shapelets 𝑆𝑆𝑆 = {𝑠𝑠𝑠1, 𝑠𝑠𝑠2, · · · , 𝑠𝑠𝑠𝑘}𝐾×𝐿, where 𝑠𝑠𝑠𝑘 denotes the 𝑘𝑡ℎ shapelet with
length of 𝐿, the distance of an EEG 𝑒𝑒𝑒𝑖 to shapelet 𝑠𝑘 is represented as 𝐷𝑖,𝑘 ∈𝐷𝐷𝐷 ∈ R𝐿×𝐾

and 𝐷𝐷𝐷 denotes their distance matrix or representation. Formally, we define 𝑒𝑒𝑒𝑖,𝑐,𝑗 as the
EEG segment of channel 𝑐 and 𝑗 is the starting point of segment. Obviously, there are
𝐽 = 𝑀 − 𝐿+ 1 EEG segments for each EEG channel. The distance 𝐷𝑖,𝑘 between channel
shapelet 𝑠𝑠𝑠𝑘 and EEG 𝑒𝑒𝑒𝑖 can be calculated with Eq.1.

𝐷𝑖,𝑘 = min
𝑗=1,...,𝐽

1

𝐶 × 𝐿

𝐶∑︁
𝑐=1

(︃
𝜋𝑘,𝑐 ·

𝐿∑︁
𝑙=1

(𝑒𝑖,𝑐,𝑗+𝑙−1 − 𝑠𝑘,𝑐,𝑙)
2

)︃
(1)

where 𝜋𝑘,𝑐 ∈ [0, 1) is the weight of each shapelet for a particular EEG channel, i.e., the
channel contribution with respect to a particular shapelet.

The shapelets learned from original EEG data can be transformed into a new representation
𝐷𝐷𝐷 ∈ R𝑁×𝐶*×𝐾 of 𝐸𝐸𝐸 ∈ R𝑁×𝐶×𝑀 , where 𝐶* denotes the number of selected EEG channels.
Obviously, this transformation reduces the dimension of original EEG, since 𝐶* < 𝐶 and
𝐾 < 𝐶.
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Since Eq.1 is not a differentiable equation [43], the soft minimum function [18] is adopted
to approximately compute 𝐷𝑖,𝑘. In detail,

𝐷𝑖,𝑘 ≈
1

𝐶

𝐶∑︁
𝑐=1

(︃∑︀𝐽
𝑗=1 𝑄𝑖,𝑘,𝑗𝑒

𝛼𝑄𝑖,𝑘,𝑗∑︀𝐽
𝑗=1 𝑒

𝛼𝑄𝑖,𝑘,𝑗

𝜋𝑘,𝑐

)︃
(2)

and

𝑄𝑖,𝑘,𝑗 =
1

𝐿

𝐿∑︁
𝑙=1

(𝑒𝑖,𝑐,𝑗+𝑙−1 − 𝑠𝑘,𝑐,𝑙)
2

(3)

where 𝛼 is a precision control parameter of the approximation function. In the case of
𝛼→ −∞, Eq.2 approximates to Eq.1. In this article, we set 𝛼 = −100 according to [18].

3.3 Similarity Minimization for EEG Channel Shapelets

To learn distinct shapelets for each EEG class, we consider to minimize similarities for
shapelets within and between EEG classes, as well introduced in [56]. For 𝑘 shapelets, their
similarity matrix is defined as 𝐴𝐴𝐴 ∈ R𝑘×𝑘. Furthermore, let 𝐴𝑖,𝑗 ∈ 𝐴𝐴𝐴 be the similarity between
two shapelets 𝑠𝑠𝑠𝑖 and 𝑠𝑠𝑠𝑗 , and 𝐴𝑖,𝑗 can be computed as

𝐴𝑖,𝑗 = 𝑒−
‖𝑄𝑖,𝑗‖2

𝜎2 (4)

where 𝑄𝑖,𝑗 can be computed as similarly as Eq.3.

3.4 Learning Shapelets

The shapelet-transformed distance matrix is regarded as EEG features, and we utilize a

linear classifier to predict the approximate target variable 𝑌𝑌𝑌 ∈ R𝑁×𝐶×𝐾 with 𝐷𝐷𝐷 and linear
classification weights 𝑊𝑊𝑊 ∈ R𝐾×𝑉 . In detail,

𝑌𝑖,𝑣 = 𝑊0,𝑣 +

𝐾∑︁
𝑘=1

𝐷𝑖,𝑘𝑊𝑘,𝑣, ∀𝑖 ∈ {1, 2, . . . , 𝑁} (5)

where 𝑊0,𝑣 ∈ R denotes the bias for the 𝑣𝑡ℎ class. And we also use a logistic function to
transform Eq.5. Namely,

𝑍𝑖,𝑣 =
𝑒𝑌𝑖,𝑣

1 + 𝑒𝑌𝑖,𝑣
, ∀𝑖 ∈ {1, 2, . . . , 𝑁} (6)

Given that, EEG data commonly contain 𝑉 classes, we can also transform the learning
model into a one-to-all binary problem. In detail,

𝑍𝑖,𝑣 =

{︂
1, 𝑍𝑖 = 𝑣
0, 𝑍𝑖 ̸= 𝑣

∀𝑖 ∈ {1, 2, . . . , 𝑁}, ∀𝑣 ∈ {1, 2, . . . , 𝑉 } (7)

Finally, we learn the model by minimizing the logistic loss between the true target 𝑍𝑍𝑍 and

the estimated one 𝑍̂𝑍𝑍,

ℒ(𝑍𝑍𝑍,𝑍̂𝑍𝑍) = −𝑍𝑍𝑍 ln 𝑍̂𝑍𝑍 − (1−𝑍𝑍𝑍) ln(1− 𝑍̂𝑍𝑍) (8)

The aim of the article is to select more important EEG channels based on EEG shapelet
learning. Hence, we aim to minimize the logistic loss by jointly learning optimal EEG
shapelets 𝑆𝑆𝑆, channel contributions 𝜋𝜋𝜋, and the optimal hyperplane 𝑊𝑊𝑊 , simultaneously.

min
𝑆,𝜋,𝑊

ℱ =

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

ℒ
(︁
𝑍𝑖, 𝑍𝑖

)︁
+

𝜆𝑊

2
‖𝑊 ‖2 + 𝜆𝑆

2
‖𝐴‖2 (9)
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At right of Eq.9, the first term is the logistic loss embedded with channel contribution,
which enhances the approximate target variable to approach the real one. The second term
is the hyperplane that learns the linear classifier, and the last term diversifies the EEG
channel shapelets through minimizing their similarities.

3.5 Shapelet-transformed EEG Channel Selection

In our method, we apply gradient descent technique to solve the non-convex optimization
objective function. As stated in Eq.9, it mainly contains three variables such as EEG shapelet
𝑆𝑆𝑆, channel contribution 𝜋𝜋𝜋, and the optimal hyperplane 𝑊𝑊𝑊 . We update each of them with
gradient descent technique by respectively fixing the other two variables.

3.5.1 Shapelet Gradient. To analyze the gradients of the objective function with respect to
𝑆𝑆𝑆, we firstly fix 𝜋𝜋𝜋 and 𝑊𝑊𝑊 , and then the objective function Eq.9 degenerates to Eq.10.

min
𝑠,𝜋,𝑊

ℱ =

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

ℒ
(︁
𝑍𝑖, 𝑍𝑖

)︁
+

𝜆𝑆

2
‖𝐴𝐴𝐴‖2 (10)

The derivative of Eq.10 with respect to 𝑆𝑆𝑆 is defined as Eq.11, which accordingly contains
two terms: the derivative of logistic loss ℒ and the derivative of the similarity between
shapelets 𝐴𝐴𝐴 with respect to EEG channel shapelet point 𝑆𝑆𝑆.

𝜕ℱ𝑖,𝑣

𝜕𝑆𝑘,𝑐,𝑙
=

𝜕ℒ
(︁
𝑍𝑖,𝑣, 𝑍𝑖,𝑣

)︁
𝜕𝑍𝑖,𝑣

𝜕𝑍𝑖,𝑣

𝜕𝐷𝑖,𝑘

𝜕𝐷𝑖,𝑘

𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑆𝑘,𝑐,𝑙
+ 𝜆𝑆𝐴𝑘

𝜕𝐴𝑘

𝜕𝑆𝑘,𝑐,𝑙
(11)

Subsequently, the derivative of the logistic loss ℒ with respect to the estimated target 𝑍̂𝑍𝑍 is

defined as Eq.12, and the derivative of the estimated target 𝑍̂𝑍𝑍 with respect to EEG-vs-shapelet
distance 𝐷𝐷𝐷 is also shown in Eq.13.

𝜕ℒ
(︁
𝑍𝑖,𝑣, 𝑍𝑖,𝑣

)︁
𝜕𝑍𝑖,𝑣

= 𝑍𝑖,𝑣 − 𝑍𝑖,𝑣 (12)

𝜕𝑍𝑖,𝑣

𝜕𝐷𝑖,𝑘
= 𝑊𝑘,𝑣 (13)

Furthermore, the derivative of 𝐷𝐷𝐷 with respect to a EEG channel segment distance 𝑄𝑄𝑄 is
defined in Eq.14, and subsequently, its derivative of the channel segment distance 𝑄𝑄𝑄 with
respect to EEG channel shapelet point 𝑆𝑆𝑆 is shown as Eq.15.

𝜕𝐷𝑖,𝑘

𝜕𝑄𝑖,𝑘,𝑗
=

1

𝐶

𝐶∑︁
𝑐=1

⎛⎝𝜋𝑘,𝑐

𝐸2
1

𝐽=𝑀−𝐿+1∑︁
𝑗=1

(︀
𝑒𝛼𝑄𝑖,𝑘,𝑗 ((1 + 𝛼𝑄𝑖,𝑘,𝑗)𝐸1 − 𝛼𝐸2)

)︀⎞⎠ (14)

where 𝐸1 =
∑︀𝐽=𝑀−𝐿+1

𝑗=1 𝑒𝛼𝑄𝑖,𝑘,𝑗 and 𝐸2 =
∑︀𝐽=𝑀−𝐿+1

𝑗=1 𝑄𝑖,𝑘,𝑗𝑒
𝛼𝑄𝑖,𝑘,𝑗 .

𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑆𝑘,𝑐,𝑙
=

2

𝐿
(𝑆𝑘,𝑐,𝑙 − 𝑒𝑖,𝑐,𝑗+𝑙−1) (15)

As stated in Eq.11, the second term for the derivative of shapelet similarity 𝐴𝐴𝐴 with respect
to EEG channel shapelet point 𝑆𝑆𝑆 is then defined in Eq.16.

𝜕𝐴𝑘

𝜕𝑆𝑘,𝑐,𝑙
=

𝜕𝐴𝑘

𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑆𝑘,𝑐,𝑙
= − 2

𝜎2
𝑄𝑖,𝑘,𝑗𝑒

−
𝑄2

𝑖,𝑘,𝑗

𝜎2
𝜕𝑄𝑖,𝑘,𝑗

𝜕𝑆𝑘,𝑐,𝑙
(16)
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3.5.2 Channel Contribution Gradient. Since the EEG channel contribution 𝜋𝜋𝜋 is embedded in
logistic loss ℒ, it can be learnt by degenerating Eq.9 to Eq.17 while fixing 𝑊𝑊𝑊 and 𝑆𝑆𝑆.

min
𝑠,𝜋,𝑊

ℱ =

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

ℒ
(︁
𝑍𝑖, 𝑍𝑖

)︁
(17)

Again, with the gradient descent technique, the derivative of Eq.17 with respect to 𝜋𝜋𝜋 is
defined as

𝜕ℱ𝑖,𝑣

𝜕𝜋𝑘,𝑐
=

𝜕ℒ
(︁
𝑍𝑖,𝑣, 𝑍𝑖,𝑣

)︁
𝜕𝑍𝑖,𝑣

𝜕𝑍𝑖,𝑣

𝜕𝐷𝑖,𝑘

𝜕𝐷𝑖,𝑘

𝜕𝜋𝑘,𝑐
(18)

In addition,
𝜕ℒ(𝑍𝑖,𝑣,̂︀𝑍𝑖,𝑣)

𝜕𝑍𝑖,𝑣
and

𝜕𝑍𝑖,𝑣

𝜕𝐷𝑖,𝑘
are introduced in Eq.12 and Eq.13, respectively. So

here we only introduce the derivative of 𝐷𝑖,𝑘 with respect to EEG channel contribution 𝜋𝜋𝜋,
which is defined in Eq.19.

𝜕𝐷𝑖,𝑘

𝜕𝜋𝑘,𝑐
=

1

𝐶

𝐶∑︁
𝑐=1

∑︀𝐽
𝑗=1 𝑄𝑖,𝑘,𝑗𝑒

𝛼𝑄𝑖,𝑘,𝑗∑︀𝐽
𝑗=1 𝑒

𝛼𝑄𝑖,𝑘,𝑗

(19)

To the end, the derivative of Eq.17 is achieved as

𝜕ℱ𝑖,𝑣

𝜕𝜋𝑘,𝑐
=

(︁
𝑍𝑖,𝑣 − 𝑍𝑖,𝑣

)︁
𝑊𝑘,𝑣

𝐶

𝐶∑︁
𝑐=1

∑︀𝐽
𝑗=1 𝑄𝑖,𝑘,𝑗𝑒

𝛼𝑄𝑖,𝑘,𝑗∑︀𝐽
𝑗=1 𝑒

𝛼𝑄𝑖,𝑘,𝑗

(20)

where 𝑄𝑖,𝑘,𝑗 is introduced in Eq.3.

3.5.3 Hyperplane Weight Gradient. For achieving the hyperplane weight 𝑊𝑊𝑊 of classifier to
minimize the objective function, we also use gradient descent to update it by fixing the EEG
shapelets 𝑆𝑆𝑆 and the EEG channel contributions 𝜋𝜋𝜋. Then Eq.9 degenerates to Eq.21.

min
𝑆,𝜋,𝑊

ℱ =

𝑁∑︁
𝑖=1

𝑉∑︁
𝑣=1

ℒ
(︁
𝑍𝑖, 𝑍𝑖

)︁
+

𝜆𝑊

2
‖𝑊𝑊𝑊‖2 (21)

Along with
𝜕ℒ(𝑍𝑖,𝑣,𝑍𝑖,𝑣)

𝜕𝑍𝑖,𝑣
is given in Eq.12, the derivative of Eq.21 with respect to 𝑊𝑊𝑊 is

then defined in Eq.22.

𝜕ℱ𝑖,𝑣

𝜕𝑊𝑘,𝑣
=

𝜕ℒ
(︁
𝑍𝑖,𝑣, 𝑍𝑖,𝑣

)︁
𝜕𝑍𝑖,𝑣

𝜕𝑍𝑖,𝑣

𝜕𝑊𝑘,𝑣
+ 𝜆𝑊𝑊𝑘,𝑣 =

(︁
𝑍𝑖,𝑣 − 𝑍𝑖,𝑣

)︁
𝐷𝑖,𝑘 + 𝜆𝑊𝑊𝑘,𝑣 (22)

And especially,

𝜕ℱ𝑖,𝑣

𝜕𝑊0,𝑣
= 𝑍𝑖,𝑣 − 𝑍𝑖,𝑣 (23)

4 THE ALGORITHM

We firstly introduce the proposed algorithm StEEGCS for EEG channel selection in this sec-
tion, followed by its convergence analysis, model initialization, and computational complexity
analysis.
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4.1 StEEGCS

The algorithm, we call StEEGCS, is a gradient descent algorithm that iteratively learns the
distinct EEG shapelets 𝑆𝑆𝑆, channel contributions 𝜋𝜋𝜋, and linear hyperplane weights 𝑊𝑊𝑊 based
on the gradient descent technique. Finally, according to channel contributions 𝜋𝜋𝜋, 𝑐𝑐𝑐𝑠𝑒𝑙 ∈ R𝑠𝑒𝑙

with top-𝑠𝑒𝑙 𝜋𝜋𝜋𝑐 contribution channels for 𝐾 shapelets can be selected out. Algorithm 1 shows
the details, in which 𝑆𝑆𝑆, 𝜋𝜋𝜋, and 𝑊𝑊𝑊 are updated iteratively under the learning rate 𝜂. Finally,
𝑠𝑒𝑙 channels 𝑐𝑐𝑐𝑠𝑒𝑙 are selected according to the top-𝑠𝑒𝑙 channel contributions 𝜋𝜋𝜋.

Algorithm 1: StEEGCS for EEG channel selection

Input: EEG data 𝐸𝐸𝐸 = {𝑒𝑒𝑒1, 𝑒𝑒𝑒2, · · · , 𝑒𝑒𝑒𝑛}𝑁×𝐶×𝑀 ; Labels of EEG 𝑌𝑌𝑌 ∈ R𝑁×𝑉 ; Number of
shapelets 𝐾; Length of shapelet 𝑙𝑚𝑖𝑛 < 𝑙 < 𝐿; Weight parameters 𝜆𝑊 and 𝜆𝑆 ;
Learning rate 𝜂; Precision control parameter 𝛼; Kernel parameter 𝜎 and
maximum iteration 𝐼𝑖𝑡𝑒𝑟; Number of selected channel 𝑠𝑒𝑙.

Output: Best shapelets 𝑆𝑆𝑆 ∈ R𝐾×𝑉×𝐿; Channel contributions 𝜋𝜋𝜋 ∈ R𝐾×𝐶 ; Hyperplane
weights 𝑊𝑊𝑊 ∈ R𝐾×𝑉 ; bias 𝑊𝑊𝑊 0 ∈ R𝑉 ; Selected EEG channel 𝑐𝑐𝑐𝑠𝑒𝑙 ∈ R𝐾×𝑠𝑒𝑙.

1 Initialize 𝑆𝑆𝑆0, 𝜋𝜋𝜋0, 𝑊𝑊𝑊 0;

2 for 𝑡 = 1 to 𝐼𝑖𝑡𝑒𝑟 do
3 for 𝑖 = 1 to 𝑁 do
4 for 𝑘 = 1 to 𝐾 do
5 Calculate 𝐷𝑖,𝑘 with Eq.2 and Eq.3;

6 end

7 for 𝑣 = 1 to 𝑉 do

8 Calculate 𝑌𝑖,𝑣 and 𝑍𝑖,𝑣 with Eq.5 and Eq.6 respectively;

9 for 𝑘 = 1 to 𝐾 do
10 for 𝑐 = 1 to 𝐶 do
11 for 𝑙 = 1 to 𝐿 do

12 𝑆𝑘,𝑐,𝑙 ← 𝑆𝑘,𝑐,𝑙 − 𝜂
𝜕ℱ𝑖,𝑣

𝜕𝑆𝑘,𝑐,𝑙
with Eqs.11–16;

13 𝜋𝑘,𝑐 ← 𝜋𝑘,𝑐 − 𝜂
𝜕ℱ𝑖,𝑣

𝜕𝜋𝑘,𝑐
with Eq.20;

14 end

15 end

16 𝑊𝑘,𝑣 ←𝑊𝑘,𝑣 − 𝜂
𝜕ℱ𝑖,𝑣

𝜕𝑊𝑘,𝑣
with Eq.22;

17 end

18 𝑊0,𝑣 ←𝑊0,𝑣 − 𝜂
𝜕ℱ𝑖,𝑣

𝜕𝑊0,𝑣
with Eq.23;

19 𝑐𝑐𝑐𝑠𝑒𝑙 ← channel indexes of top-𝑠𝑒𝑙 𝜋𝜋𝜋 for 𝐾 shapelets;

20 end

21 end

22 end

23 return 𝑆𝑆𝑆, 𝜋𝜋𝜋, 𝑊𝑊𝑊 , 𝑊𝑊𝑊 0, 𝑐𝑐𝑐𝑠𝑒𝑙;

4.2 Convergence Analysis

Algorithm 1 selects 𝑠𝑒𝑙 EEG channels with top-𝑠𝑒𝑙 contributions for 𝐾 shapelets by simulta-
neously learning shapelets 𝑆𝑆𝑆, channel contributions 𝜋𝜋𝜋, and linear hyperplane𝑊𝑊𝑊 based on the
gradient descent strategy. As the objective function is non-convex, it, in the gradient descent
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strategy, just can converge into a local optima under two parameters that interferes with
each other, such as the learning rate 𝜂 and the maximum iteration 𝐼𝑖𝑡𝑒𝑟. A proper setting of
𝜂 and 𝐼𝑖𝑡𝑒𝑟 can obtain a good convergence in a relatively short time. In particular, a larger
𝜂 can help algorithm operate less iterations to minimize the objective function (see Eq.9),
but it likely deteriorates the convergence of the algorithm. On the contrary, if the algorithm
aims to converge with a smaller learning rate 𝜂, it needs more iterations. Consequently, it
is also a trade-off between learning rate and maximum iteration to set for the algorithm.
But considering to the acceptable time cost to converge, we recommend to set 𝜂 = 0.01 and
𝐼𝑖𝑡𝑒𝑟 ≤ 100 in the article.

4.3 Model Initialization

The objective function (i.e., Eq.9) is non-convex, so the gradient descent-based algorithm in
which the variables of shapelets 𝑆𝑆𝑆, channel contributions 𝜋𝜋𝜋, and linear hyperplane 𝑊𝑊𝑊 are
required to learn simultaneously just converge to the local optima. The gradient descent
strategy to solely learn each of them cannot guarantee the global optima of objective
function, but it’s also widely applied to solve non-convex problems as a trade-off technique.
In practice, the performance of gradient descent-based algorithms are significantly influenced
by initializations of its parameters that we are addressing in the section. As the patterns of
every EEG class can be represented by their centroid, for 𝑆𝑆𝑆0, it’s initialized by the 𝑘-means
centroid that contains same length of segments from EEG data. Then, according to the
initialization of shapelets 𝑆𝑆𝑆, the original EEG data can be represented by the shapelet-
transformed matrix 𝐷𝐷𝐷. To initialize channel contribution 𝜋𝜋𝜋0, we transformed the average
distances between shapelets and EEG channel segment to its initialization contributions

with sigmoid function, i.e., 𝜋0(𝑖) = sigmoid
(︁

1
𝐾

∑︀𝐾
𝑘=1 𝐷𝑖,𝑘

)︁
(where 𝑖 denotes the 𝑖𝑡ℎ EEG

channel, and 𝐷𝑖,𝑘 refers to Eq.2). And 𝑊𝑊𝑊 0 is simply randomly initialized close to 0 based
on a normal distribution.

4.4 Computational Complexity

As shown in Algorithm 1, StEEGCS solves the problem for 𝑛 EEG trials in maximum
iterations 𝐼𝑖𝑡𝑒𝑟. In each iteration, it mainly takes 𝑂(𝑛𝑐𝑘𝑙2) for calculating 𝐷𝐷𝐷; 𝑂(𝑛𝑣𝑘) for 𝑌𝑌𝑌 ,

𝑍̂𝑍𝑍, and𝑊𝑊𝑊 , respectively; 𝑂(𝑛𝑣𝑘𝑐2𝑙3+𝑛𝑣𝑐𝑘3𝑙3+𝑛𝑣𝑐𝑘𝑙2) for 𝑆𝑆𝑆; 𝑂(𝑛𝑣𝑘𝑐2𝑙2) for 𝜋𝜋𝜋, and 𝑂(𝑛𝑣) for
𝑊𝑊𝑊 0, respectively, where 𝑘 denotes the number of shapelets that needs to learn; 𝑣 denotes the
number of EEG classes; 𝑐 denotes the number of EEG channels; 𝑙 is the maximum length of
shapelets. In sum, the total time complexity of StEEGCS is𝑂(𝐼𝑖𝑡𝑒𝑟(max{𝑛𝑐𝑘𝑙2, 𝑛𝑣𝑘, 𝑛𝑣𝑘𝑐2𝑙3+
𝑛𝑣𝑐𝑘3𝑙3 + 𝑛𝑣𝑘𝑐𝑙2, 𝑛𝑣𝑘𝑐2𝑙2, 𝑛𝑣})). Since commonly 𝑘, 𝑐≪ 𝑙, the computational complexity of
StEEGCS is 𝑂(𝐼𝑖𝑡𝑒𝑟(𝑛𝑣𝑘𝑐

2𝑙3 + 𝑛𝑣𝑐𝑘3𝑙3)).

5 EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we firstly introduce the details of EEG datasets, evaluation methodology, and
baseline methods. Then, we carry out a detailed experimentation to compare the proposed
StEEGCS with state-of-the-art EEG channel selection approaches on several real-world EEG
datasets.

5.1 EEG Datasets

10 EEG datasets are used to evaluate the efficacy of the proposed method, which includes
the slow cortical potentials (SCPs), motor imagery EEG, and wrist movement EEG data. All
the EEG datasets and their detailed descriptions are publicly available as online archives at
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http://www.bbci.de/competition/ii/ (Dataset:II) and http://www.bbci.de/competition/iv/
(Ddataset:IV), respectively. To evaluate EEG channel selection methods with respect to
classification accuracy, we randomly divide the original EEG dataset into two parts: training
dataset and testing one. All the selection methods are operated on the training data and
evaluated with the testing one. The detailed descriptions of each EEG dataset are shown in
Table 1.

Table 1. EEG Datasets

Dataset Description
Number×Channel×Sample
(training data:testing data)

Classes

Ia SCPs from one healthy subject
268×6×896
(200:68)

2

Ib SCPs from one ALS patient
200×7×1152
(120:80)

2

IV 1 calib 1a Motor imagery of 2-class of
left hand, right hand, or
foot from 3 healthy subjects

200×59×800
(120:80)

2IV 1 calib 1b
IV 1 calib 1f
IV 2a s1 Motor imagery of left hand

right hand, both feet, and
tongue from 3 healthy subjects

288×22×313
(200:88)

4IV 2a s2
IV 2a s3
IV 3 s1 Wrist movement to left, right, forward,

backward from 2 healthy subjects
160×10×400
(120:40)

4
IV 3 s2

5.2 Baselines

To further establish the superiority of StEEGCS for EEG channel selection, we compare it
to several classic and state-of-the-art approaches, such as CSP [51], RCSP [12], SCSP [4],
IMOCS [19], and CCSE [53].

CSP: Common spatial pattern operates on a covariance matrix between EEG channels. In
detail, it is effective in discriminating two classes of EEG data by maximizing the variance
of one class while minimizing the variance of the other class. CSP-based channel selection
method selects EEG channels based on CSP coefficients, i.e., channels corresponding to
maximal CSP vector coefficients are selected as the optimal EEG channels.
RCSP: Regularized common spatial pattern-based algorithm selects EEG channels by

inducing the sparsity in the spatial filters, which actually uses 1-norm regularization. The
solution of RCSP is sparser than conventional CSP.

SCSP: Sparse common spatial pattern-based algorithm selects EEG channels by scattering
the common spatial filters within a constraint of classification accuracy. In detail, SCSP
scatters the CSP spatial filters to emphasize on a limited number of EEG channels with
high variances between classes, and to discard the rest of the channels with low variances.

IMOCS: Iterative multiobjective optimization for channel selection selects EEG channels
by firstly initializing a reference candidate solution and subsequently finding a set of most
relevant channels in an iterative manner.
CCSE: This method selects EEG channels via using correlation coefficient of spectral

entropy (CCSE). EEG channels are selected based on the ranking of correlation coefficient,
in a way that the spectral entropy of each channel across all frequencies is considered by
taking sum of the squared correlation coefficient.
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Honestly, there are many classifiers for EEG time series classification, including Deep
Neural Networks (DNNs)-based classifier [13], COTE [5], HIVE-COTE [34], St-TSC [33],
RPCD [46], and SAX-SEQL [39], but we just apply SVM classifier in the article, since (1)
SVM is the most widely used and promising classifier for EEG time series classification; (2)
as introduced in [9, 10] that SVM also performs as well as such classifiers as COTE, St-TSC,
RPCD, and SAX-SEQL on EEG classification; (3) besides, SVM also achieves the highest
accuracy for EEG classification compared with Fisher linear discriminant analysis (FLDA),
Generalized Andersons Task linear classifier (GAT), Linear Discriminant Analysis (LDA)
[44]. Therefore, SVM classifier with LIBSVM toolbox [8] was used in EEG classification
step to assist to analyze the efficacy of channel selection approaches. Additionally, SVM is
operated 10 times on testing dataset and their average is reported as the final classification
accuracy.
For baseline methods, the parameters are tuned according to their original articles. For

StEEGCS learning shapelets, we set a minimum length of shapelets 𝑙𝑚𝑖𝑛 = 10 to learn, and
other shapelets are expanded to different lengths by a scaler 𝑟 ∈ Z+, i.e., {𝑙𝑚𝑖𝑛, · · · , 𝑟𝑙𝑚𝑖𝑛}.
Besides, the weight parameters 𝜆𝑊 and 𝜆𝑆 are searched in {10−4, 10−2, 100, 102, 104}, and
the learning rate 𝜂 is set as 𝜂 = 0.01.

5.3 Sensitivity Analysis

The StEEGCS is a shapelet-transformed EEG channel selection and the selected channel
seems to be influenced by channel contribution (i.e., channel weights), shapelet length, and
shapelet number. Hence, we respectively discuss their impacts in this section.

5.3.1 Impact of Shapelets on Channel Weights. We analyze the impact of shapelet length and
shapelet number on StEEGCS. We firstly show shapelets learned from each class of EEG
datasets, see Fig.2. Actually, we just show one EEG shapelet of each class in Fig.2, and it
seems to indicate that shapelet length of 30 contains better distinguishing patterns compared
to other shapelet lengths such as 10, 40, 60, and so on. In detail, a shorter shapelet (e.g.,
10 or 20) cannot clearly distinguish the patterns of different EEG channels, so it probably
does not select the most representative channels for EEG classification. Meanwhile, a longer
shapelet probably contains patterns that can be presented by a relatively shorter shapelet,
such as 120 to 60, 60 to 30, so it likely contains redundant patterns of EEG data. Besides,
as introduced above, we only analyze shapelet lengths of 10 at least while 50 or 120 at most
for corresponding EEG datasets in the article.

Moreover, shapelet numbers are affected by shapelet length as well as the sample length
of each EEG channel. For example, learning too many shapelets (more than 5) with length
of 120, it may require more than 600 samples for each EEG channel, otherwise the learned
shapelets are not distinct with each other, since they probably overlap with each other or
contain too many redundant/common shapelet segments; If learning too many shapelets
with length of 10, it can be transformed to learn a smaller amount of shapelets with longer
shapelets such as 20, 30, or 60, etc, since a longer shapelet probably contains several shorter
shapelets. In other words, learning too many shapelets no matter longer or shorter may be
not good for learning EEG channel weights and maybe finally degrade EEG classification. A
larger number of shapelets learned to select EEG channels seem to provide more redundant
EEG patterns for classifier, and it also costs more time. Consequently, we, according to the
length of EEG shapelets and the corresponding channel sample, we just discuss the impact
of shapelet numbers from 1 to 5 on EEG channel selection and classification.
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Fig. 2. Shapelets with different lengths learned from every EEG class
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StEEGCS selects EEG channel based on channel contributions (i.e., channel weights). In
other words, EEG channel weights are actually determined by EEG shapelets. Therefore,
we analyze the impact of shapelets on EEG channel weights, including shapelet length and
shapelet number. The results on 10 EEG datasets are shown in Figs.3–12, respectively.
Generally, using 3 shapelets, the discriminations among EEG channel weights are relatively
more obvious than other numbers of shapelets. Correspondingly, Fig.13 briefly illustrates
the relationship between EEG channel weights and shapelet lengths when fixing the number
of learned shapelets as 3, and it shows that shapelet length of 30 reflects relatively more
distinguishing EEG channel weights for StEEGCS. As we stated before, a large number of
shapelets seem to contain redundant or less discriminative patterns in EEG channel data
while small numbers of shapelets may contain incomplete patterns of EEG channel signals.
Hence, both of the two situations result in relatively lower discrimination among EEG channel
weights, which probably influences the performance of channel selection and classification.
Similarly, short or long shapelets probably result in relatively lower discrimination of EEG
channel weights as well, since short shapelets (e.g., 10) may contain incomplete patterns
of EEG channel data while long shapelets (e.g., 90, 120), on the contrary, may contain
redundant or less discriminative EEG patterns. Consequently, according to the results in
Figs.3–13, setting EEG shapelet number as 3 and shapelet length as 30 for StEEGCS can
get relatively the highest discrimination EEG channel weights, which is beneficial to achieve
best EEG classification.

5.3.2 Impact of Shapelets on Classification Performance. We discuss the impact of shapelet
number and shapelet length on EEG classification performance, along with the number
of selected EEG channels. The impact of shapelet number (fixing shapelet length as 30

EEG dataset: II_Ia

Fig. 3. Channel weights with shapelet lengths and numbers on II Ia
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EEG dataset: II_Ib

Fig. 4. Channel weights with shapelet lengths and numbers on II Ib

EEG dataset: IV_1_calib_1a

Fig. 5. Channel weights with shapelet lengths and numbers on IV 1 calib 1a
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EEG dataset: IV_1_calib_1b

Fig. 6. Channel weights with shapelet lengths and numbers on IV 1 calib 1b

EEG dataset: IV_1_calib_1f

Fig. 7. Channel weights with shapelet lengths and numbers on IV 1 calib 1f

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Shapelet-transformed Multi-channel EEG Channel Selection 1:17

EEG dataset: IV_2a_s1

Fig. 8. Channel weights with shapelet lengths and numbers on IV 2a s1

EEG dataset: IV_2a_s2

Fig. 9. Channel weights with shapelet lengths and numbers on IV 2a s2
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EEG dataset: IV_2a_s3

Fig. 10. Channel weights with shapelet lengths and numbers on IV 2a s3

EEG dataset: IV_3_s1

Fig. 11. Channel weights with shapelet lengths and numbers on IV 3 s1
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EEG dataset: IV_3_s2

Fig. 12. Channel weights with shapelet lengths and numbers on IV 3 s2
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Fig. 13. EEG channel weights with respect to different shapelet lengths (shapelet number: 3)
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according the discussion in subsection 5.3.1) and shapelet length (fixing shapelet number as
3 according the discussion in subsection 5.3.1) is displayed in Fig.14 and Fig.15, respectively,
both of which indicate that classification performance is improved with a fewer EEG channels
selected by StEEGCS, especially when the number of selected EEG channels is 2, 3 or 4.
As illustrated in Figs.14–15, classification accuracies achieved with 3 shapelets of 30 are

relatively the highest in all conditions, in accord with the discussion in subsection 5.3.1. In
other words, StEEGCS with a relatively small number of shapelets (i.e., 3) in a moderate
length (i.e., 30) can select the most relevant EEG channels for SVM classifier to yield the
highest classification accuracy.

Fig. 14. Classification with respect to selected EEG channels and shapelet numbers (shapelet length: 30)
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Fig. 15. Classification with respect to selected EEG channels and shapelet lengths (shapelet number: 3)

5.4 Performance Comparison with Baselines

We, in this section, analyze the efficacy of our method StEEGCS with respect to classification
accuracy by comparing it to baselines on 10 EEG datasets. As we concluded in Section 5.3
that 3 shapelets with length of 30 can select the most relevant EEG channels and yield
classification performance with the selected EEG channels, we set shapelet length: 30 and
shapelet number: 3 for StEEGCS.

5.4.1 Comparison with Non-selected EEG Channels. With SVM, we firstly analyze the impact
of StEEGCS selecting EEG channels on EEG classification accuracy. The results, with 3
shapelets of length 30, are shown in Fig.16, which indicates that the SVM-based classification
accuracies on all EEG datasets increase generally along with the number of selected EEG
channels decreases. Besides, Table 2 also shows that EEG classification accuracy with
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Fig. 16. Classification accuracy with StEEGCS selected EEG channels (shapelet number: 3; shapelet
length: 30)

Table 2. Classification accuracy improvement (Best classification with selected EEG channels vs non-
selection)

EEG dataset
Non-selection
(# of all channels)

Selected
(# of selected channels)

Improvement (%)

II Ia 80.88 (6) 91.18 (4) 12.73
II Ib 65 (7) 78.75 (2) 21.15
IV 1 calib 1a 72.5 (59) 86.25 (2) 18.97
IV 1 calib 1b 65 (59) 71.25 (16) 9.62
IV 1 calib 1f 68.75 (59) 80 (16) 16.36
IV 2a s1 62.27 (22) 75.91 (6, 10, 12) 21.90
IV 2a s2 67.95 (22) 78.18 (11) 15.06
IV 2a s3 59.55 (22) 74.32 (8, 9) 24.80
IV 3 s1 57.5 (10) 70 (3) 21.74
IV 3 s2 65 (10) 77.5 (7) 19.23

StEEGCS selected channels is greatly improved by 9.5% at least for all EEG datasets,
compared to those with non-selection channels (i.e., all channels). StEEGCS aims to search
distinct EEG shapelets that represent the original EEG data, to provide more informative
EEG patterns for SVM classifier. In other words, as embedded with logistic loss, shapelet-
transformed StEEGCS not only reduces redundancy of EEG data, but also strengthens
important patterns for classifier modeling. Meanwhile, as the number of selected EEG
channels decreases, the efficiency of SVM classifier is correspondingly significantly improved,
compared to non-selection EEG channels, see Fig.17.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2020.



Shapelet-transformed Multi-channel EEG Channel Selection 1:23

5 4 3 2 1

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

II_Ia

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

non-
selection

6 5 4 3 2 1
3

3.5

4

4.5

5

5.5

II_Ib

# of selected EEG channels

non-
selection

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

4

4.5

5

5.5

6

6.5

7

7.5

IV_1_calib_1a

055 40 30 20 10 5non-
selection

35 25 154550

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

IV_1_calib_1b

055 40 30 20 10 5non-
selection

35 25 154550

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

3.5

4

4.5

5

5.5

6

6.5

7

IV_1_calib_1f

055 40 30 20 10 5non-
selection

35 25 154550

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

0

5

10

15

20

25

30

IV_2a_s1

20 15 10 5 1non-
selection

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

0

5

10

15

20

25

30

IV_2a_s2

20 15 10 5 1non-
selection

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

0

5

10

15

20

25

30

IV_2a_s3

20 15 10 5 1non-
selection

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

9 8 7 6 5 4 3 2 1
17

17.5

18

18.5

19

19.5

20

20.5

21

IV_3_s1

non-
selection

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

9 8 7 6 5 4 3 2 1
17

17.5

18

18.5

19

19.5

20

20.5

21

21.5

IV_3_s2

# of selected EEG channels

C
la

ss
if

ic
at

io
n

 t
im

e 
(s

ec
on

d
s)

Fig. 17. Classification efficiency with EEG channels selected by StEEGCS (shapelet number: 3; shapelet
length: 30)

5.4.2 Comparison with EEG Channel Selection Baselines. To further establish the efficacy of
StEEGCS, we, with SVM classifier, compare it to other EEG channel selection methods such
as CSP, RCSP, SCSP, IMOCS, and CCSE. As applied to 10 EEG datasets, the classification
results are shown in Fig.18. The results of StEEGCS are achieved with shapelet length
of 30 and shapelet number of 3 (the explanation is in detail introduced in Section 5.3).
The results clearly demonstrate the superiority of StEEGCS for EEG channel selection,
since the classification accuracy with StEEGCS selected channels is generally higher than
those of other channel selection methods. Additionally, we also compare their averages and
standard deviations of all classification accuracies achieved with different selected EEG
channels on each EEG dataset, i.e., the averages and standard deviations of all classification
for each channel selection method, see Fig.18. The results are shown in Table 3, which
demonstrates that on all EEG datasets, StEEGCS assists SVM classifier to achieve the best
averaged classification accuracy. Moreover, the best and worst classification accuracies with
correspondingly selected EEG channels are also displayed in Table 4, which also indicates
that StEEGCS is the best method for EEG channel selection, compared to different baselines,
since it yields the highest classification accuracy on all EEG datasets no matter in best
or worst situation. Besides, we also analyze the significance of StEEGCS over baselines
for EEG channel selection by using one-tailed t-test (𝛼 = 0.05) on their classification
accuracy, see Table 5. The 𝑝-values in Table 5 demonstrate the classification performance
achieved by StEEGCS is significantly different to those baseline methods on most of EEG
datasets, especially some of which are extremely significantly different. In other words, Table
5 indicates that StEEGCS outperforms baselines for EEG channel selection with respect to
classification accuracy.
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Fig. 18. Classification results of different EEG channel selection methods (shapelet number: 3; shapelet
length: 30)

Table 3. Classification accuracy in all cases with different selected numbers of channels (Average ±
standard deviation) (The best results are highlighted in boldface.)

EEG dataset CSP RCSP SCSP IMOCS CCSE StEEGCS

II Ia 81.62 ± 3.03 83.68 ± 3.27 85.80 ± 3.89 84.92 ± 2.12 84.82 ± 1.72 89.71 ± 1.04
II Ib 64.98 ± 2.22 68.33 ± 2.66 69.51 ± 3.14 68.71 ± 2.39 68.22 ± 2.50 73.96 ± 3.74

IV 1 calib 1a 73.88 ± 1.37 75.77 ± 1.84 76.83 ± 2.19 76.59 ± 2.51 76.49 ± 2.71 78.66 ± 3.97
IV 1 calib 1b 65.43 ± 0.57 66.33 ± 0.58 66.95 ± 0.66 66.30 ± 0.89 66.73 ± 0.81 67.95 ± 1.44
IV 1 calib 1f 69.83 ± 1.76 70.67 ± 1.84 72.11 ± 2.60 71.50 ± 2.29 71.58 ± 2.53 73.48 ± 3.83
IV 2a s1 66.03 ± 1.06 67.40 ± 1.86 68.71 ± 2.53 68.15 ± 2.25 68.59 ± 2.59 70.88 ± 3.52
IV 2a s2 69.36 ± 0.68 70.62 ± 1.11 71.28 ± 0.87 71.11 ± 1.43 71.25 ± 1.00 73.80 ± 1.21
IV 2a s3 61.88 ± 1.57 63.14 ± 1.65 64.24 ± 2.18 64.00 ± 2.35 64.58 ± 2.17 67.82 ± 3.06
IV 3 s1 58.95 ± 1.63 59.99 ± 1.96 60.93 ± 2.24 60.97 ± 2.96 61.13 ± 2.78 64.17 ± 4.38
IV 3 s2 67.00 ± 1.73 68.40 ± 1.84 69.07 ± 2.29 69.24 ± 2.44 69.46 ± 2.39 72.08 ± 3.68

In addition, we also accordingly compare the execution time of EEG channel selection
approaches, and the result is illustrated in Fig.19. As Fig.19 indicates, StEEGCS costs the
most for EEG channel selection on most EEG datasets. As introduced in Section 4.4, the
computational complexity of StEEGCS is 𝑂(𝐼𝑖𝑡𝑒𝑟(𝑛𝑣𝑘𝑐

2𝑙3+𝑛𝑣𝑐𝑘3𝑙3)), and it shows that the
time consumption of StEEGCS is mainly determined by optimal shapelet learning, which
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Table 4. The best and worst classification accuracy with corresponding selected number of EEG channels
(The corresponding best results are highlighted in boldface.)

EEG dataset
Classification
(# of selected

channels)
CSP RCSP SCSP IMOCS CCSE StEEGCS

II Ia
best 83.71 (4) 86.76 (3) 89.92 (3) 86.41 (4) 86.85 (4) 91.18 (4)
worst 76.34 (1) 78.54 (1) 80.22 (1) 81.23 (1) 82.14 (1) 88.24 (1)

II Ib
best 67.92 (3) 72.45 (3) 74.21 (3) 72.72 (3) 73.04 (3) 78.75 (2)
worst 62.22 (1) 65.27 (6) 65.87 (6) 66.22 (6) 66.48 (6) 67.50 (6)

IV 1 calib 1a
best 76.72 (10) 79.15 (10) 80.23 (10) 80.74 (10) 81.35 (2) 86.25 (2)
worst 71.77 (55) 73.22 (55) 73.96 (35) 72.86 (40) 73.27 (40) 73.75 (45,55)

IV 1 calib 1b
best 66.42 (35) 67.52 (35) 68.35 (3) 67.41 (3) 67.76 (1) 71.25 (16)
worst 64.65 (50) 65.19 (50) 65.45 (55) 64.78 (55) 64.94 (50) 66.25 (40,50)

IV 1 calib 1f
best 72.76 (15) 73.97 (15) 75.34 (15) 74.45 (15) 76.09 (15) 80 (16)
worst 67.21 (45) 67.78 (45) 68.10 (45) 68.28 (45) 67.96 (45) 68.75 (45,50)

IV 2a s1
best 67.22 (10) 70.54 (10) 72.87 (10) 71.77 (10) 72.06 (10) 75.91 (6,10,12)
worst 63.88 (20) 64.23 (20) 65.07 (20) 64.59 (20) 64.19 (20) 64.55 (20)

IV 2a s2
best 70.31 (3) 71.77 (3) 72.21 (3) 72.65 (10) 72.45 (5) 78.18 (11)
worst 68.72 (1) 68.43 (20) 69.87 (1) 68.97 (20) 69.56 (15) 72.5 (15,20)

IV 2a s3
best 64.23 (10) 65.37 (10) 67.11 (10) 67.28 (5) 67.87 (5) 74.32 (8,9)
worst 59.92 (1) 60.78 (1) 60.98 (20) 60.77 (20) 61.54 (20) 62.95 (20)

IV 3 s1
best 60.71 (5) 62.36 (3) 63.17 (3) 64.16 (3) 63.89 (3) 70 (3)
worst 56.78 (1) 57.83 (1) 58.21 (1) 57.98 (1) 58.45 (1) 62.5 (1,2)

IV 3 s2
best 68.77 (3) 70.56 (7) 72.17 (7) 71.89 (7) 71.56 (7) 77.5 (7)
worst 64.23 (1) 65.18 (1) 65.56 (1) 64.89 (1) 65.34 (1) 67.5 (1)

Table 5. Significant difference (𝑝-value) of StEEGCS comparing to baselines with classification accuracy
(Significant * : 𝑝 ≤ 0.05; Very significant ** : 𝑝 ≤ 0.01; Extremely significant * * * : 𝑝 ≤ 0.001)

StEEGCS (vs.) CSP RCSP SCSP IMOCS CCSE

II Ia ** ** * ** * * *
II Ib * * * ** * ** **

IV 1 calib 1a * * * * − (𝑝 = 0.059) * *
IV 1 calib 1b * * * * * * * * * * **
IV 1 calib 1f ** * − (𝑝 = 0.114) * − (𝑝 = 0.058)
IV 2a s1 ** * − (𝑝 = 0.088) * − (𝑝 = 0.078)
IV 2a s2 * * * * * * * * * ** * * *
IV 2a s3 * * * ** * * *
IV 3 s1 * * − (𝑝 = 0.075) − (𝑝 = 0.086) − (𝑝 = 0.094)
IV 3 s2 ** * − (𝑝 = 0.063) − (𝑝 = 0.074) − (𝑝 = 0.088)

requires many iterations (or time) to find the optimal length and number of shapelets. But
StEEGCS has competitive EEG channel selection efficiency to IMOCS and CCSE. Anyway,
considering its superior classification performance, StEEGCS’s execution time for EEG
channel selection is acceptable.

6 CONCLUSION AND FUTURE WORKS

Multi-channel EEG is widely applied in Brain-Computer Interfaces (BCIs), but analyzing
EEG signals with too many channels likely results in computational cost and inconvenience
for BCI applications. EEG channel selection is a way to deal with the issue. Besides, as many
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Fig. 19. Execution time on EEG channel selection (shapelet number: 3; shapelet length: 30)

studies reported before, EEG channel selection can not only improve the BCI performance
by removing irrelevant or redundant EEG channels, but also enhances convenience for BCI
applications with less EEG channels. Hence, we proposed an EEG shapelet-transformed
channel selection approach that we call StEEGCS, which firstly used EEG shapelets to
represent original EEG data, and subsequently applied gradient descent technique to learn
distinct EEG shapelets, hyperplane, and EEG channel weights in a non-convex logistic loss
minimization function. Finally, the most relevant EEG channels to classification performance
are selected for SVM classifier. The experimental results on several real-world EEG datasets
demonstrated that StEEGCS improves the classification accuracy and efficiency by selecting
a small amount of EEG channels, and it also outperforms the classic and state-of-the-art
EEG channel selection methods on SVM classification performance.
In the article, gradient descent is adopted in StEEGCS that probably leads to local

optima, so other techniques such as heuristic approach should be considered to solve
the non-convex minimization objective function of logistic loss for StEEGCS. Besides, as
many promising classifiers emerged out, it would be interesting to apply new classifiers,
such as DNNs, HIVE-COTE, etc. mentioned in Section 5.2, to analyze the universality
of StEEGCS in future work. Additionally, we also intend to exploit more efficient EEG
shapelet transforming/learning/selection approaches to extract distinct and informative
EEG shapelets in the future, such as [11, 25, 32, 42], and so on.
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