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Abstract—Electroencephalogram (EEG)-based applications in
Brain-Computer Interfaces (BCIs, or Human-Machine Inter-
faces, HMIs), diagnosis of neurological disease, rehabilitation,
etc, rely on supervised techniques such as EEG classification
that requires given class labels or markers. Incomplete or
incorrectly labeled or unlabeled EEG data are increasing with
the ever-expanding amount of EEG data generated by such
applications and the ambiguities these generate degrade the
performance of supervised techniques. To address the challenging
task of clustering EEG data with limited priori knowledge, we
introduce a semi-supervised graph embedding EEG clustering
approach termed ConsEEGc¢ with multiple constraints, i.e., label-
transformed connectivity constraints that constrains the con-
nection or disconnection among EEG data, compactness-and-
scatter constraint that constrains the intra-cluster compactness
and inter-cluster scatter of EEG clusters, and fairness constraint
that constrains the fair ratio of elements between EEG clusters,
to make best use of limited priori knowledge of EEG data and to
achieve better EEG clustering results. ConsEEGc is conducted
with an optimization objective function that integrates pseudo
label learning, least-square error minimization and multiple
constraints, and it can quickly converge to local optima. The
experiments demonstrate that ConsEEGc can efficiently yield
good clustering results on various types of real-world EEG
datasets, compared to state-of-the-art standard unsupervised and
semi-supervised EEG/time series clustering algorithms.

Index Terms—Semi-supervised EEG clustering, connectivity
constraints, compactness-and-scatter constraint, fairness con-
straint.

I. INTRODUCTION

LECTROENCEPHALOGRAM (EEG) is an established

technique that has been widely applied in Brain-
Computer Interfaces (BCIs) [1]-[3] as a non-invasive means
of analysing brain working status and body functions [4]. Its
utility in Human-Machine Interfaces (HMIs) [5], diagnosis of
neuropsychiatric disease [6], [7], and rehabilitation [2], [3] has
expanded in recent decades, but most of these applications
are concentrated on supervised tasks that require a priori
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knowledge such as EEG labels or markers that defines the class
they belong to. Unfortunately, not all EEG labels associated
with specific patterns of brain activity can be completely or
correctly obtained from subjects across different recording
sessions separated by days or weeks. This is especially so
for those complex and challenging patients groups, such as
those suffering from Alzheimer’s disease (AD) [6], epileptic
seizures [8], stroke [2], [3] or amyotrophic lateral sclerosis
(ALS) [9], etc. Consequently, the increasing amount of un-
labeled or mislabeled EEG data likely degrades the efficacy
of supervised methods, e.g., classification that is vital to BCI-
based applications and disease diagnosis. With the increased
utility of EEG and other brain-monitoring or neuro-imaging
methods, labelling signals is becoming a labor-intensive and
time-consuming task with the ever-increasing unlabeled sig-
nals in every-day applications. A means of overcoming the
problem of increasing amounts of unlabeled data is clustering.
Clustering is a way to assign objects into corresponding groups
based on the correlations or patterns of objects without any
supervised information such as data labels or markers. In other
words, the notion of clustering is group those objects with high
similarity (similar patterns) into same class while separating
different groups as far as possible. In real-world applications,
labeled and unlabeled EEG data are often mixed together,
hence labeled EEG data containing known information can,
intuitively, improve the performance of unlabeled EEG clus-
tering. That is, mixtures of labeled and unlabeled EEG data
provide a semi-supervised way to analyze unlabeled EEG data.
Here, we demonstrate that with a small amount of labeled EEG
data, a semi-supervised-inspired strategy for unlabeled EEG
clustering can improve the performance of neural signature
analyzing using EEG, potentially enhancing its efficacy and
utility in real-world applications.

A. Motivation

As a promising strategy to conduct unsupervised tasks,
the emerging technique of EEG clustering [10], [11], is of
interest to a wide range of researchers and clinicians. However,
most of traditional clustering methods based on analysis of
EEG time-series aim to group EEG signals based on in-
herent similarities/dissimilarities in the time course of the
EEG data without any supervision of a priori knowledge.
Unfortunately, however, the features of EEG time series in
corresponding clusters obtained by completely unsupervised
clustering appear unpredictable. Besides, as a specific type of
bio-electrical signals, EEG’s characteristics of high cerebration

Xplore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3206330

relevance, high dimension, high complexity, low signal-to-
noise, strong non-linearity and oscillation probably make it
inapplicable for traditional time series clustering methods to
handle partially labeled EEG. Consequently, semi-supervised
clustering of EEG time series provides a promising solution
to the problem of unpredictable data, not only guiding clus-
tering methods to improve the performance of EEG cluster-
ing techniques. Unlike unsupervised analysis for completely
unlabeled EEG data, semi-supervised analysis for partially
labeled EEG data has not been reported. Further, a priori
information from multiple sources, such as the limited label
information, linkage and cluster fairness, provides constrained
but potentially important information for semi-supervised
EEG clustering. However, most traditional constrained semi-
supervised clustering approaches do not make full use of a
priori knowledge. This leads to four limitations: (1) most
traditional constrained clustering approaches only consider
single constraint, such as Must-link and Cannot-link con-
straints [12], or fairness [13] or label information [14]. Multiple
constraints integrated with such single constraints are rarely
considered simultaneously; (2) connectivity constraints, such
as connection constraints (similar to Must-link constraints) and
disconnection constraints (similar to Cannot-link constraints)
are not well or fully used; (3) the intra-cluster compactness
and inter-cluster scatter are not considered as a constraint
for semi-supervised clustering; and (4) the fairness constraint
is not considered as an additional constraint to monitor the
balance of clustered partitions and improve cluster quality.
Motivated to make full use of limited a priori knowledge of
the small amount of labeled EEG data to improve clustering
performance, we explored the potential benefits of semi-
supervised clustering for analysing partially labeled EEG data.
Specifically, we propose a multi-constraint semi-supervised
clustering algorithm termed ConsEEGc for partially labeled
EEG data, which simultaneously considers the connectivity
constraints, compactness-and-scatter constraints, and fairness
constraint.

B. Contributions and Outline

Semi-supervised EEG clustering is a non-trivial task in
such applications as BCI, diagnosis of disease and reha-
bilitation, but few related studies on semi-supervised EEG
clustering have been reported so far. To address the problem of
semi-supervised EEG clustering, this paper proposes a multi-
constraint semi-supervised graph embedding EEG clustering.
In summary, the main contributions of the paper are briefly
introduced as follows.

e Addressing the problem of semi-supervised EEG clus-
tering, we proposed a novel optimization objective
function with label-transformed connectivity constraints,
compactness-and-scatter constraint, and fairness con-
straint. This represents the first attempt to address semi-
supervised EEG clustering with multiple constraints.

e We exploited connectivity constraints to link EEG signals
with a priori knowledge of a small amount of labeled
EEG signals, with the aim of minimizing the potential
connection or disconnection among partially labeled EEG
data based on their similarities.
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e We utilized compactness-and-scatter constraint to generate
high-quality EEG clusters by minimizing inter-cluster
scatter and maximizing intra-cluster compactness, and
transformed this to fairness-constrained NCut (i.e., nor-
malized Cut), to relax compactness-and-scatter constraint
and achieve approximately equal-sized EEG clusters.

e We proposed a novel approach ConsEEGc for semi-
supervised EEG clustering by applying a gradient descent
strategy to obtain optimal minimization of an objective
function that integrates pseudo label classifier learning
and least-square error minimization of pseudo labels
with connectivity constraints, compactness-and-scatter
constraint, and fairness constraint. We also demonstrate
the efficacy and superiority of ConsEEGc by comparing
its performance with various types of clustering methods
on several categories of EEG datasets.

The remainder of this paper is presented as follows: Re-
lated works on EEG/time series clustering are summarized in
Section II. The preliminaries are introduced in Section III.
Subsequently, the proposed model of multi-constraint semi-
supervised EEG clustering with connectivity and fairness
constraints is described in Section IV, and the algorithm
ConsEEGc is presented in Section V, including convergence
analysis, initialization analysis. Detailed experiments are pre-
sented in Section VI. In the end, we give conclusions and
future works in Section VII.

II. RELATED WORKS

In this section, we summarize some works related to our
work, including traditional unsupervised clustering and semi-
supervised clustering.

A. Traditional Clustering

As the technique to deal with unlabeled data, various
promising traditional unsupervised clustering approaches have
been intensively emerged in recent decades. The reported
unsupervised clustering approaches can be roughly grouped
into five categories: Classical k-means-type clustering, such as
k-means++ [15] and k-multiple-means [16], aims to enhance
or improve the standard k-means algorithm by boosting the
initialization of centers for standard k-means with specific
strategies of probability enhancement or multiple subcenter
modification; Density-based clustering, such as DBSCAN [17],
OPTICS [18], and SNN [19], identifies dense regions with
density estimators and then links neighbouring dense regions
to cluster; Distance-based clustering, such as k-DBA [20]
and K-SC [21], clusters data based on distance measures or
similarity metrics, which tries to learn representative centroid
sequences with an optimization objective on a specific distance
measure such as Euclidean distance, dynamic time warping,
etc; Feature-selection clustering, such as nonnegative spectral
feature selection [22], robust unsupervised feature selection
[23], and robust spectral feature selection [24], efc, transforms
EEG time series into feature space, and then applies k-means
to cluster with selected features; and shape-based or shapelet-
based clustering such as k-Shape [25] and USSL [26], trans-
forms EEG time series into shape/shapelet space by learning
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distinct shapes/shapelets of EEG time series, and then clusters
based on the correlations between EEG time series and the
learnt shapes/shapelets. In summary, unsupervised clustering
without any supervision or constraint clusters EEG time series
just by learning the representative patterns of completely
unlabeled data without considering priori knowledge and then
groups them with higher similarities into same cluster while
those with lower correlations into different clusters. However,
with limited priori knowledge (e.g., a small amount of labels
or markers in original data), the performance of clustering
intuitively can be enhanced or even improved.

B. Semi-Supervised Clustering

In practice, unsupervised clustering may result unexpected
clusters that differs from user’s expectation due to its lack
of data labels. To solve this problem, semi-supervised clus-
tering has been reported in [27], [28], which integrates pri-
ori knowledge such as label information [14], [29], pairwise
constraints of linkage [30], and other additional information
about their similarity or distance [31]-[34], to obtain better
EEG clusters with what is known or assumed about the true
categories. Since Wagstaff [12] put forward the concept of
constrained clustering by embedding pairwise constraints of
Must-Link and Cannot-Link into clustering algorithms, many
related constrained studies have been reported, such as [35]-
[37]. Moreover, a large number of classical clustering methods
have been modified or extended with pairwise constraints,
such as semi-supervised mean-shift clustering [38], weighted
consensus semi-supervised clustering [39], constrained spectral
clustering [40], [41], semi-supervised DenPeak clustering [42],
[43], and fairness-constrained clustering [13], [44], [45], and
other approaches [46], [47]. In detail, the must-link constraint
constrains that pairwise samples must be in the same cluster,
and the cannot-link constraint demands samples should be
grouped into different clusters. Most of these semi-supervised
clustering approaches mainly address one type of constraints
or single constraint, but they seldom explore the integration of
different constraints, such as the fusion of pairwise constraints
and fairness constraint, to improve the efficacy of semi-
supervised clustering. In other words, the performance those
clustering approaches with single constraints mainly rely on
the quality of such constraints, which is easily influenced by
noises or incorrect single constraints.

III. PRELIMINARIES

In a semi-supervised clustering notion, partially labeled
EEG signals should be clustered into corresponding subgraphs
in an EEG graph according to the prior known labels and their
similarities (or weights). As a promising technique, spectral
clustering utilizes graph Laplacian matrix to cluster. For an
undirected weighted complete EEG graph Gg = (V, S) where
V ={e1,- - ,en} denotes the graph vertexes transformed by n
EEG signals with length of m and S € (Rt U0)"*" defines the
normalized weighted adjacency matrix constructed by pairwise
non-negative similarities between any two EEG signals, where
si; € S, based on Gaussian similarity, in the paper is defined
as
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Si5 = exXp 202 (D

where o is the kernel parameter. Particularly, s;; = s;;, where
i,7 denote EEG signal e; and e; (Ve;,e; € V), respectively.
Besides, the degree d;; € D of an EEG vertex e; in Gg is
defined as

di =dis =y sij. @
j=1

Then, D denotes the degree matrix that is diagonal with
degrees of every EEG vertex: di, - - ,d,. In the end, the EEG
graph Laplacian L¢ is correspondingly defined as

Lo, =D -8, @)

where rank(Lez) = n — k, and k is the multiplicity of
eigenvalues of 0 for L¢,, which indicates the number of
connected subgraphs in Gg, as introduced in [48]-[50].

IV. SEMI-SUPERVISED EEG CLUSTERING WITH MULTIPLE
CONSTRAINTS

To address the challenging task of semi-supervised EEG
clustering with limited priori knowledge and to make best
use of such knowledge from partially labeled EEG data, we
proposed a semi-supervised clustering method ConsEEGc with
multiple constraints, including the label-transformed connec-
tivity constraints that considers the connection or discon-
nection among partially labeled EEG data, compactness-and-
scatter constraint that guarantees the intra-cluster compactness
and inter-cluster scatter of EEG clusters, and fairness con-
straint that constrains the balance of EEG amount in clusters.
The framework of our method ConsEEGc is briefly illustrated
in Fig.1, which illustrates the main process to cluster EEG data
with multiple constraints. In detail, ConsEEGc is conducted
with a minimization optimization objective function, which
integrates the pseudo label classifier learning, least-square
error minimization of pseudo labels to clustering labels, with
connectivity constraints, compactness-and-scatter constraint,
and fairness constraint.

A. Optimal Pseudo Adjacency Matrix

Motivated by the Theorem introduced by Mohar [49] and
Chung [50] that the multiplicity & of eigenvalue 0 of Laplacian
matrix Ls equals the number of connected components (i.e.,
clusters). Given an initial adjacency matrix of EEG similarity
M e R™ ", this paper, similarly to [36], tries to learn an
optimal pseudo adjacency matrix S to approximate M with a
minimization optimization strategy, i.e.,

min_[|5 — M]3
SeR+uU0 “)
s.t. Sl, =1,,rank(Ls)=n—c¢,

where ¢ denotes the number of EEG clusters, i.e., the number
of eigenvalues 0 of Ls, and 1, = [1,---,1]7.

B. Pseudo Labels for Partially Labeled EEG Signals

In this paper, we cluster EEG signals with their similarities,
where similar EEG signals are probably clustered into same
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Fig. 1.

The framework of the method. @ indicates the original EEG data with a priori knowledge such as label-transformed connection/disconnection

information and number of EEG data in every category (or cluster) that is called fairness constraint in following introduction; @ shows the similarity
adjacency matrix (i.e., spectral graph) of EEG data with original priori knowledge transformed constraints; @ illustrates the clustering process with connectivity,
compactness-scatter constraint, and fairness constraint transformed with limited priori knowledge from EEG data; @ learns the locally optimal graph-based
solution that holds the connectivity and fairness constraints; ® outputs the learned EEG cluster labels.

category. Namely, EEG signals with high similarity are likely
assigned with same pseudo labels when clustering. Suppose
partially labeled EEG signals contain c classes, then the pseudo
label matrix is defined as L € R**™. In fact, the pseudo label
matrix can be also defined as a probability matrix that L;,
denotes the probability (pseudo label) of EEG e; belongs to
v'" category. For example, for two categories v; and vy, if the
pseudo label L;,, > L;,, for EEG e;, then e; is clustered into
category vy, rather than v..

C. Regularized Least-Square Error Minimization

In the paper, it tries to partition similar EEG signals into
same cluster with partial labels. Hence, the proposed method
clusters incompletely labeled EEG signals by minimizing the
regularized least-square error, where the optimal adjacency
matrix, optimal pseudo labels, and pseudo label classifier are
learnt simultaneously. Mathematically,

. T 2 2
Suin [W5S — Lk + vl WiE )

S.1. WTS].n = 171.7

where W € R"*¢ denotes the pseudo label classifier, S €
R™*™ denotes the optimized EEG similarity adjacency matrix,
and v > 0 is regularization parameter.

D. Limited Label-Transformed Connectivity Constraints

For limited labeled EEG data, those, obviously, with differ-
ent labels must be disconnected with each other when clus-
tering, and those EEG with same labels must be categorized
into same cluster together. In other words, EEG clustering
must satisfy the constraints of partially priori knowledge, i.e.,
connectivity constraints.

In detail, those partially labeled EEG signals with different
labels that holding disconnection constraint (similar to
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Cannot-link) must be assigned to different clusters.

Theorem 1. (Disconnection Constraint) Given a nonnegative
n-EEG-constructed graph Gg, if EEG signals e; and e;
(ei,e; € E) hold disconnection constraint with labeling
indicators that l; # l; € L, L € R", there exists no paths
between e; and e; such that

LLg,L" =0.

That is, e; and e; must be clustered into different subgraphs
G.,G.; CGE,G;; NG, = 2.

in the
| |

Proof: The proof is shown

Supplementary file.

in Appendix A

Similarly, those partially labeled EEG signals with same
labels that holding connection constraint (similar to Must-
link) must be assigned into same clusters when clustering.

Theorem 2. (Connection Constraint) Given a nonnegative
n-EEG-constructed graph Gg, if EEG signals e, and
e; (ei,e;j € E) hold connection constraint with same
labeling indicator 1, = 1; € R". When LLg LT = 0,
Ve, € E,E C E\ {e; Ue,} on the path between e; and e,
must be in the same subgraph of Gg that e; and e; locate in.

Proof: The proof is presented in Appendix B in the
Supplementary file. [ ]

With Theorem 1 and Theorem 2, EEG signals that
connect to partially labeled EEG signals also must satisfy the
connectivity constraints that labeled EEG signals hold.

Deduction 1. (Affinity Connection Constraint) Given a
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nonnegative n-EEG-constructed graph Gg, where EEG
signals e; and e; (e;,e; € E) hold connection constraint, then
Ve, € E,E C E\ {es,e;} that connects to either e; or e; must
be in the same subgraph G.,..; of Gg that e; and e; in.

Proof: The proof is similar to Theorem 2. [ ]

Deduction 2. (Affinity Disconnection Constraint) Given
a nonnegative n-EEG-constructed graph Gg, where EEG
signals e; and e; (e;,e; € E) hold disconnection constraint,
then Yei,eq € E,E C E\ {ei,e;},e; # eq where e; connects
to e; while e, connects to e;, then e, must be clustered into
subgraph G, that e; in and e, is in the same subgraph G.;
that e; in, such that G., N G.; = @.

Proof: This deduction can be proven with Theorem 1
and Deduction 1. ]

When clustering, the expected result is that partially labeled
EEGs and unlabeled EEGs are partitioned into correct clusters
that results in > LyLsL} = 0. In practice, we learn the
optimal EEG-constructed graph to cluster partially labeled
EEG with connectivity constraints:

min zk: L.CsL}. (6)

With Ky Fan’s Theorem [51], the connectivity constraints
in Eq.(6) can be equivalently written as

min tr(LyLsLY). (7)

E. Compactness-and-Scatter Constraint

According to the notion of clustering, a good clustering
approach will get intra-cluster compact and inter-cluster scat-
tered results for unlabeled data. Therefore, to achieve the goal,
our method clusters partially labeled EEG signals constrained
with compactness and scatter by simultaneously minimizing
the similarities of EEG signals among different clusters and
the similarity difference in same clusters, see Eq.(8).

. 1
msln Z Sgh + 3 Z (Spo — Slt)27 (8)

g€C; ,heC; p,0,L,teC;
i#] pFo,l#t

where s denotes EEG similarity and C is EEG cluster. The
first term denotes scatter constraint and the second one is
compactness constraint for partially EEG clustering. Actually,
the difference of EEG similarities in the same cluster is
relatively small, i.e., s,o — si: is close to 0. Hence, the second
term in Eq.(8) can be ideally approximated to 0, i.e.,

min 1
2

> (spo—su)? = 0. )
p,0,l,teC;
pFo,l#t

To the end, Eq.(8) can be simply relaxed as

min (10)
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Then, Eq.(10) can be transformed to minimize the normal-
ized Cut (i.e., NCut [48]) that is defined as

c

cut(Cl-, E\CZ)

min NCut(E) = ; wol(C) (11)
where vol(C;) = ZteCi Zje[l’“_ n] Sti-
By defining a matrix R € R"*¢ as
;774‘ c Ck:
Ry = UOl(Ck) ’ (12)
0,i ¢ Ch

Equation (11) can be relaxed to solve the minimization of
Eq.(13) with a relaxation requirement R" DR = I:
mintr(R" LsR)
R (13)
st. RFRDR=1,
where D is the degree matrix of S such that d; =
> e, m Sij- By substituting R = D~2U such that U €
R™*¢ Eq.(13) is relaxed to
min tr(UTD_%CsD_%U)
v (14)
st. U'U=1I

where U can be obtained by computing k smallest eigenvalues
and corresponding k eigenvectors of D :LgD 2.

F. Fairness Constraint

To achieve a fairly balanced clustering for partially labeled
EEG signals, we also bring in the fairness to constrain the
clustering in the paper. According to the notion of fairness
defined by Chierichetti et al. [52], the fairness of EEG
clustering is similarly defined as follows.

Definition 1. (Fairness) For a clustering C = U;_,C;
of EEG set E = Uj_E; such that C; # 2,Nn_,C; = &,
where v, c denote the number of EEG categories (i.e., EEG
classes) and number of clusters, respectively, its fairness is
defined as

airness(C) = min min T~
f ( ) i€[1,--- ,c] m#EnE[L, - 0] ‘En ﬂCl‘

With the definition of fairness, the EEG clustering in the
paper holds Lemma 1.

€[0,1. (15)

Lemma 1. For any clustering C
fairness(C) < fairness(E).

of EEG set E,

Proof: The proof is shown in Appendix C in the
Supplementary file. [ ]

As noted in Lemma 1, we try to cluster EEG signals with
fairness that approximately equals to original EEG set. To
achieve this, we add fairness constraint on EEG clustering in
the paper, as introduced in Lemma 2.

Lemma 2. (Fairness Constraint) For a v-category (i.e., v-
class) EEG set E = U;_, E, its clustering C = U;_,C; holds a
linear fairness constraint with a binary membership indicator

1706Et |Ey| .
= {ouzn = e L i

|[E:NC;|

that (oA

Authorized licensed use limited to: Jiangnan University. Downloaded on October 07,2022 at 00:26:02 UTC from IEEEqXpIore. Restrictions apply.



This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3206330

S (bor = ) R = 0 for t € [1,-- v — 1]
Proof: The proof is shown in Appendix D in the
Supplementary file. |

With Lemma 2, the compactness-and-scatter constraint de-
fined in Eq.(13) can be transformed to the fairness constraint
that is reformulated to

ml:izn tr(R"LsR)

(16)
st. RTDR = I, BTR = O(U—I)Xc’

where B € R™*(*~1) subject to rank(B) = v—1, is the binary
membership indicator matrix constructed by column vectors of
Eq.(17) with respect to corresponding position (o, t),

E
B = {colomn wvectors|bo: — M}7 (17)
n
where t € [1,--- ,u—1],0 € [1,--- ,n], n = | E|, v, c denote the

number of EEG signals, number of EEG categories, and num-
ber of partitioned EEG clusters, respectively. As introduced in
[13] that if v — 1 < n — ¢, there does not exist solutions for
Eq.(16), so we define a matrix Q € R"*("~v+1) a5

Q = orth(ker(BT)), (18)

where orth() defines the orthogonal basis of a matrix, and
ker(BT) is defined as

ker(B") = {x ¢ R" : B"z = 0}. (19)

By substituting R = QX with X € R"~v+1*¢ Eq,(16) can
be transformed as
mintr(XT QT LsQX)
x (20)
st. XTQTDQX =1.
Since QT DQ is positive semidefinite, we then define a
positive semidefinite Z € RC~v+Dx(n=v+1) guch that

Z? = Q" DQ. 1)

Subsequently, by substituting X = Z 'U with U €
R(~v*+Lxe then the problem of Eq.(20) can be reformulated
to Eq.(22) that aims to solve NCut with fairness constraint.

mintr(UTZ'Q"LsQZ 'U)
v (22)
st. U'U=1I.

The solution U of Eq.(22) can be solved by computing the
corresponding eigenvectors as columns of Z7'QTLsQZ™*
corresponding to its ¢ smallest eigenvalues, i.e.,

U = % . Ceigenvectm"s(Z_IQTLSQZ_1)~

To the end, R with fairness constraint in Eq.(16) is solved
by

(23)

R=QZz'U. (24)
G. Problem Formulation

Our method clusters incompletely labeled EEG signals by
a minimization optimization objective function that integrates
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pseudo adjacency matrix, pseudo label classifier, least-square
error minimization, connectivity constraints, compactness-and-
scatter constraints, and fairness constraint. Mathematically, the
problem we are addressing is defined as

min

_mn _ 2 "2 Ta 9
R,W,S,L:F_ 2 IS — Ml[F + D) (IW*S - L||7

4

+ DWWl + Der(LLsL”)
T %tr(RTESR) @5
s.t. rank(Ls)=n—c,S1, = 1,, w7TS1, = 1,,
R=Qz 'U,U"U =1,

where 1,72, 73, 74,75 are weight parameters. The first term

aims to learn an optimal pseudo adjacency matrix to achieve
¢ EEG clusters from Lg, the seconde and third terms try
to learn the optimal class label of EEG; The fourth term
constrains the connectivity of partially labeled EEG signals
and it also minimizes the connectivity degrees from one EEG
to another; The last term that is relaxed to a NCut with fairness
constraint constrains the intra-cluster compactness and inter-
cluster scatter among different clusters and same clusters.

V. THE PROPOSED ALGORITHM: CONSEEGC

In this section, we introduce the proposed algorithm Con-
sEEGc, followed by its convergence analysis, initialization and
time complexity.

A. ConsEEGc

As introduced in the former section, the objective function
(i.e., Eq.(25)) is not globally convex, so we apply gradient
descent to compute R, W, S, L in a way that we update every
single variable by fixing other variables, and it finally leads to
the algorithm ConsEEGc, see Algorithm 1.

1) Updating R: We update R by fixing L, W, and S. Then
the objective function Eq.(25) is degenerated to

min F(R) = %tr(RTﬁsR)

(26)
st. BTR=""V* yTu =1.
where R =QZ'U.
The derivative of Eq.(26) w.r.t R is
OF
T; =~vsLsR. 27)
Then, the R, at time ¢ + 1 can be updated by
OF
Rip1 =R~ 2t (28)

where 7 is the well-determined learning rate.
2) Updating W: When fixing L, S and R, W is updated.
Then the objective function Eq.(25) can be degenerated to

i — 2ywTs_L2 13 2
min F(W) = Z|w's - |t + 2wt 9
The derivative of Eq.(29) w.rt W is
OFw T T
——— =SW' ' S—-L w
aw — 2S( )+ (30)

= (1288T + )W — 4, SL”.
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Then, the Wy, at time ¢ + 1 can be updated by

OFw
oW

3) Updating S: Similarly, we update S by fixing L, W
and U. Then the objective function Eq.(25) is degenerated to

Wi =W, —1n (31)

min F(S) = LIS - M} + 2 |W"S - LI}

(32)
+ %tr(LEsLT) + %tr(RTﬁsR).
Its derivative of Eq.(32) w.r.t S is
o0F
ass =n(S — M) +7WW"'S - L)
(33)
Y4 5T 8[:5’ Y5 T@L:s
+§L L 95 +?RR 95

where Ls = D — S and di; = > 7 si;. Then, to simplify
Eq.(33), we get

oLs _oD-S8) ob . or
oS oS oS 1_6.5' Ir=0-1,

since S is subject to S1, = 1, and d; = 3, sij;, then D =
diag(S1,) = I for simplification. To the end, Eq.(33) can be
reformulated as

(34)

Algorithm 1  ConsEEGc
Input:
E™™ = EL U E; = U{E;: n EEG trials of v categories
with length of m, where Er, E; denote labeled EEG
signals and unlabeled ones, respectively
Y1, Y2, V3, V4, v5: Weight parameters
n: Learning rate
c: Number of clusters
Output:
L*<*™: Optimal pseudo labels for partially labeled E
Compute M of E with Eq.(1)
Compute Dy, L with Eq.(2), Eq.(3), respectively
Initialize Ry, Wy, So, Lo:
Compute R, by Eqgs.(17)-(19), Eq.(21), Egs.(23)-(24)
Construct S, with connectivity constraints by Eq.(40)
and then normalize it such that So1, =1,
6:  Construct Ly = [Ljaper; L], where L is computed with
k-means on unlabeled EEG E;
Compute W, with Eq.(41), based on Lo and M
8: while not converging do
9:  Compute Dg,, Ls,:

R e

10: Dg, + diag(d;) with Eq.(2)

11: Ls, + Dg, — S; with Eq(3)

12z Update Ryy1, Wiy1, Siy1, Lt

13: Ry + R, — n2ZE with Egs.(27) and Eq.(28)
14: Wip1 +— Wi — nagrv‘(," with Eq.(30) and Eq.(31)
15: Sii1 < St — nag-'ss with Eqs.(33)—(36)

16: Liy + Ly — n%5 L with Eq.(38) and Eq.(39)
17: t—t+1

18: end while
19: return U* = l']H.17 L* = Lt+1, S* = St+1, W* = Wt+1
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oF
S — (I +:WWHS -y M — WL
03 Y4 yT 5 T (33)
— ?L L — 5RR .
Subsequently, the S;+1 at time ¢ + 1 can be updated by
_ 0Fs
St+1 = St n 85’ . (36)

4) Updating L: With the gradient descent strategy, we
update L by fixing W, S and U. Then, the objective function
Eq.(25) can be degenerated to

min F(L) = %HWTS — L)%+ %tr(LﬁsLT). 37)

The derivative of Eq.(37) w.rt L is defined as

OF¢L

oL —2 (WS — L)+ ~v.LLs

= L(uLs +7I) - nWT'S,

(38)

where I denotes the identity matrix.
To the end, the L;;, at ¢t + 1 can be updated by

OFL
oL °

Litiy=Li—n (39)

B. Convergence Analysis

The proposed algorithm ConsEEGc exploits the gradient
descent strategy to solve the multi-variable optimization
objective function with respect to optimal similarity
adjacency matrix S, pseudo label classifier W, and optimal
pseudo labels L, that can converge to a local optima with a
well-determined learning rate 7.

Theorem 3. The proposed gradient descent algorithm
ConsEEGc converges to a local optima with a well-
determined learning rate 1.

Proof: The proof is presented in Appendix E in the
Supplementary file. [ ]

C. Initialization

As introduced above that the algorithm, ConsEEGc, con-
verges to its local optima, the well-organized initialization
probably yields a good clustering. Here we introduce the
initialization of Rg, Wy, So, Lo.

Firstly, R, can be initialized as Ry = QZ U, see
Eq.(24), where U can be achieved by c eigenvectors of
Z'QTLMmQZ ' as columns, corresponding to the first ¢
smallest eigenvalues, see Eqs.(17-19), Eq.(21), and Eq.(23).
In the paper, we try to learn the nonnegative and normalized
pseudo adjacent matrix S to approximate the original ground-
truth adjacent similarity matrix M, such that > s;; = 1. In the
paper, we simply initialize S, by Eq.(40) and then normalize

it such that So1, = 1,,, where 1,, = [1,--- ,1]%.
1, ej,e; € E with connection constraint,
0, e;,e; € E with disconnection constraint
Sij — I 2y =] S ] (40)
——, otherwise.
|E|’
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To initialize Lo, the class labels of labeled EEGs E; are set
as their original ones and unlabeled ones are set by applying
k-means on unlabeled EEG data E;, then Lo = Ljaper U L.
Subsequently, we simply initialize W}, based on the initializa-
tion of Ly and M:

Wy = (LoM ™ H7. (41)

With the initialization of such variables, the gradient descent
algorithm, ConsEEGc, iteratively learns the local optima with
a well-determined learning rate 7.

D. Time Complexity

As introduced in Algorithm 1, we learn the local optima
of W,S,U, L with a well-determined learning rate n during
many iterations that contributes to the time consumption. Here,
we discuss the time complexity of Algorithm 1 in detail.

To compute M (Line 1), Das and Las (see Line 2), it
takes O(n), respectively. The initialization for Ry, Wy, So, Lo,
see Lines 4-7, requires O(n’*(n —v+1) + n(n —v + 1)* +
(n—v+1)>+nc(n—v+1)) = O(n®) (Line 4), O(n) (Line 5),
O(n?) (Line 6), and O(cn?) (Line 7), respectively, where n, ¢, v
denote the total number of EEG signals, number of clusters,
and number of EEG categories, respectively. With the ini-
tialization, Algorithm 1 updates R, W, S, L iteratively, along
with updating Dgs and Ls. In each iteration, the computation
of Ds, and Ls,, see Line 10-11, takes O(n), respectively.
Subsequently, it takes O(cn(n—v+1) +c(n —v+1)* +cn® +
n*(n—v+1)+n(n—v+1)*) = O(n®) to update R, see Line
13, and O(n® + cn?®) = O(n®) for updating W as Line 14
shows, since ¢ < n,v < n. When updating S and L, it takes
O(n® 4+ cn?) = O(n®) and O(cn?), respectively. In a result, the
time complexity of Algorithm 1 with iter iterations converging
to local optima is O(5n +n® +cn® +iter - (2n+ 3n® + cn?)) =
O(iter - n®).

VI. EXPERIMENT AND DISCUSSION

This section presents the experimental results of ConsEEGc
comparing with several state-of-the-art unsupervised and semi-
supervised clustering approaches on different types of real-
world EEG datasets.

A. EEG Datasets

As Table T shows, we assessed 12 EEG datasets ! for our
approach ConsEEGc, including (1) slow cortical potentials
(SCPs, a type of EEG data), one set recorded from a healthy
subject, i.e., II_Ia, and the other from a patient with amy-
otrophic lateral sclerosis (ALS; or motor-neuron disease) (i.e.,
II_Ib); A cross-healthy-patient EEG dataset is also constructed
with datasets Ia and Ib, i.e., II_Ia_Ib; (2) Three-class mental
imagery EEG with pre-computed features from two healthy
subjects, i.e., III_V_sl1 and II_V_s2; (3) Four-class motor
imagery EEG from three healthy subjects, i.e., IV_2a_sl,
IV_2a_s2 and IV_2a_s3; (4) Two-class simple motor imagery
EEG datasets from two healthy subjects, i.e., IV_2b_s1 and

'The preprocessed EEG datasets are publicly —available at

https://github.com/Jackie-Day/EEG-data-and-descriptions.
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IV_2b_s2; (5) Four-class hand movement EEG datasets from
two healthy subjects, i.e., IV_3_s1 and IV_3_s2. Importantly,
as the EEG data were all originally labeled, we deleted these
labels prior to performing clustering algorithms. Besides, all
the EEG data are z-normalized and randomly shuffled in rows.

B. Evaluation Criteria

We evaluated the semi-supervised clustering performance of
the proposed method with five criteria, Accuracy (i.e., Rand
index), normalized mutual information, adjusted rand index,
F-score, and Fleiss’ kappa.

e Accuracy (Acc) (i.e., Rand index [53]) evaluates clustering
performance according to the percentage of correct clustered
numbers over total elements, which is mathematically defined
as Acc = zpanrrprFn s Where TP, TN, FP,FN denote the
number of true positives, true negatives, false positives, and
false negatives, respectively.

e Normalized Mutual Information (NMI) [54] measures the

quality of clusters, which is mathematically defined as NM I =
SV Y CiNCy | log NCinCl

4 , where |C;| and |C}| denote
i_/‘(ZZf Cilog 1Sy (2 1oy 108 152
the number of EEG signals in Cluster C; and Cj, respectively;
v and N denote the number of categories and the total number
of EEG signals, respectively.

o Adjusted Rand Index (ARI) [55] measures the agreement
between two partitions: one given by the cluster process
and the other defined by external criteria. Namely, ARI =

(5[ ()2 () 6)
IROEIRE ARG

of objects in both class u,; and cluster v;; a;: number of objects
in class u; and b;: number of objects in cluster v;; n: total
number of objects.

e F-score [56] unequally weighs the false positives F'P and
false negatives F'N in RI with a scale ?arameter B8 > 0 on
recall. Mathematically, F — score = %’ where precision
P = 7pipps recall v = TP is true positives and
commonly 3 = 1.

o Fleiss’ kappa [57] is a statistical measure for assessing
the coherence of decision ratings among classes. In detail,

P—P. o _ N k
Pﬁ;, Where P = m(zizl Zj:l n2 — Nn) and

P = TR . i
P, = Zj:l(ﬁ Zi:1 nij)2~

Higher NMI, ARI, F-score, and kappa correspond to better
performance of EEG clustering approaches.

, where n;;: number

_TP
TP+FN°®

C. Baselines

To illustrate the efficacy of ConsEEGc, we compare it to
several state-of-the-art EEG time series clustering algorithms,
such as classic unsupervised clustering, spectral clustering,
semi-supervised clustering with constraints, and fair clustering.
These baselines are in detail introduced as follows.

k-means++ [15]: As a variant of classic k-means, k-means++
modifies the initialization of the first cluster center by replac-
ing initializing randomly with probability, and then it performs
the standard k-means to cluster.

KMMC [16]: K-Multiple-Means Clustering, unlike the clas-
sic k-means-type algorithms, groups EEG time series with
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TABLE I
EEG DATASETS.

Length of

Dataset Descriptions # EEG Trials EEG Signals # EEG Channels # Clusters  Category Ratio
II_Ia SCPs from a healthy subject 268 5377 6 2 133:135
II_Ib SCPs from an ALS patient 200 8065 7 2 100:100

Mixed SCPs of dataset Ia (from a healthy
a :100:133:

II_Ia_Ib subject) and Ib (from an ALS patient) 468 377 6 4 100:100:133:133

II_V_sl  Mental imagery EEG with precomputed features 3488 97 3 3 1440:928:1120

II_V_s2 of left hand, right hand, and word association 3472 1472:880:1120

IV_2a_sl .
IV_2a_s2 fog?rhmszgfythEEGt °fn1def: l:md’ 288 6887 2 4 72:72:72:72
IV oas3 ght hand, both feet, and tongue
IV_2b_sl Simple motor imagery EEG of left
_ 120 940 3 2 60:60
IV_2b_s2 hand and right hand
IV_3_sl Hand movement EEG in directions of
—_— 160 4001 10 4 40:40:40:40
IV_3 s2 left, right, forward, and backward

multiple sub-cluster centers into specified & clusters by formal-
izing it as an optimization problem that updates the partitions
of m sub-cluster centers and k clusters with an alternating
optimization strategy.

USPEC [41]:Ultra-Scalable Spectral Clustering uses a hy-
brid representative selection strategy and a fast approximating
method of k-nearest representatives to construct a sparse
affinity sub-matrix, and then utilizes transfer cut to partition
EEG time series.

USENC [41]: Ultra-Scalable Ensemble Clustering integrates
multiple USPEC clusters into an ensembe clustering frame-
work to enhance the robustness of USPEC.

SSDC [43]: Semi-Supervised DenPeak Clustering exploits
pairwise constraints or side information to guide EEG time
series cluster process, which improves the performance of
clustering.

SCPCOG [37]: Semi-Supervised Clustering via Pairwise
Constrained structured Optimal Graph cluster EEG signals
with the pairwise constraints of must-link and cannot-link in
semi-supervised graph-based clustering.

FNSC [13]: Fair Normalized Spectral Clustering partitions
EEG signals into corresponding fairer EEG clusters by em-
bedding fairness constraints in graph spectral clustering.

The number of clusters for clustering algorithms are
set according to the number of classes in original EEG
datasets, and parameter values in baseline methods are
set as same as the original papers (For details, please
refer to the original paper). For ConsEEGc 2, the ker-
nel parameter o for Gaussian similarity that is used to
calculate the similarities between EEG data, and the op-
timal combinations of weight parameters ~i,72,7vs,v4,7s
for the objective function are flexibly auto-searched from
{1073,1072,107%,10°, 10", 10%,10®} according to the size of
EEG datasets. For example, IV_2b_s1, IV_2b_s2, IV_3_sl,
and IV_3_s2 are relatively small-sized EEG datasets, so
it prefers to auto-search the optimal combination of pa-
rameters from the range {107*,1072,107*,10°,10%,10%,10%};
II_Ia, I Ib, IV_2a_sl, IV_2a s2, and IV_2a_s3 are rel-

>The code is available online at https:/github.com/Jackie-Day/EEG-data-
and-descriptions.
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atively large-sized EEG datasets, so it prefers to auto-
search the optimal combination of parameters from the range
{1072,1071,10%,10,10%}; and for II_Ia_Ib, III_V_s1, and
III_V_s2, the optimal combination of parameters is preferred
to auto-search from the range {107',10° 10'}. The learning
rate n is kept fixed at 0.01, and the loop is set no more
than 50 iterations for convergence. All baseline algorithms
(i.e., those seven state-of-the-art clustering algorithms) are
conducted with Matlab R2014b, on Windows 10 machines
with 8+%3.0 GHz CPUs and 16 GB memory. To render the
clustering results more reliable, all algorithms are run 20 times.

D. EEG Clustering Results Compared with Baselines

We present the experimental results and discussion for
the proposed ConsEEGc that is designed for EEG semi-
supervised clustering with multiple constraints, including the
completely unlabeled EEG clustering performance compared
to state-of-the-art clustering algorithms, multi-constrained
semi-supervised clustering performance comparison, execution
time analysis, convergence analysis, and sensitivity analysis.
Note that the results of ConsEEGc are achieved in best
parameters that are auto searched. In fact, we transformed label
information of original EEG signals to connectivity constraints
in the experiments. For example, 10% connectivity constraint
means the labels of 10% EEG signals are prior given.

1) Completely Unlabeled EEG Clustering Results: To show
the efficacy of ConsEEGc for completely unlabeled EEG
clustering, we compared its performance with that of seven
state-of-the-art clustering algorithms without using any ini-
tialization of label-transformed connectivity constraints. That
is, the value of connectivity constraint was initialized to 0%,
and we initialized the fairness constraint according to the
definition of fairness in Section IV-F that can be described
as the minimum ratio of EEG signals between different
classes (categories) in EEG datasets. In detail, the fairness
constraint values for EEG datasets II Ia, II Ib, II Ia_Ib,
HI_V_s1,11_V_s2,1V_2a_s1,IV_2a_s2,1V_2a_s3,1V_2b_sl,
IV_2b_s2,1V_3_sl, and IV_3_s2 are set as 133/135, 100/100,
100/135, 928/1440, 880/1472, 72/72, 72/72, 72/72, 60/60,
60/60, 40/40, and 40/40, respectively, according to Table I. The

Xplore. Restrictions apply.
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TABLE II
EEG CLUSTERING RESULTS ON TWELVE EEG DATASETS WITH RESPECT TO NMI, ARI, F-score AND kappa.

EEG dataset ‘ Criteria ‘ k-means++ KMMC USPEC USENC SSDC SCPCOG FNSC ConsEEGc
Acc 0.5115 + 0.0221  0.4985 + 0.0003 0.4982 £+ 0.0 0.501 + 0.0121 0.5175 + 0.0208  0.4982 + 0.0001 0.4991 + 0.0 0.5324 + 0.0
I Ia NMI 0.0352 + 0.0175  0.0308 + 0.0218 0.0001 £ 0.0 0.0104 + 0.0369  0.0307 £ 0.0322  0.0296 + 0.0003 0.0017 + 0.0 0.0509 + 0.0
- ARI 0.0432 + 0.0241  0.0005 + 0.0005 -0.0035 £+ 0.0 0.0033 + 0.0242  0.0352 + 0.0415 0.0 £ 0.0002 -0.0015 £+ 0.0 0.0648 + 0.0
F-score 0.4869 + 0.11 0.5049 + 0.0132  0.4996 + 0.0038  0.5047 + 0.0382  0.522 4 0.0982  0.5056 + 0.0033  0.5045 + 0.0225  0.5261 + 0.1313
kappa | 0.2084 + 0.0611  0.0217 + 0.0142 0.0093 + 0.0 0.0326 + 0.0695  0.1675 + 0.1042  0.0148 + 0.0002 0.0464 + 0.0 0.2618 + 0.0
Acc 0.4986 + 0.0012  0.4975 + 0.0001 0.4975 + 0.0 0.4976 + 0.0002  0.4983 + 0.0009 0.4977 + 0.0 0.4976 + 0.0001 0.4999 + 0.0
b NMI 0.0017 + 0.0018 ~ 0.0026 + 0.0027 0.0001 £+ 0.0 0.0002 = 0.0002  0.0014 + 0.0015 0.0254 + 0.0 0.0001 #+ 0.0001  0.0337 + 0.0415
- ARI -0.0026 + 0.0024 -0.0002 £ 0.0001 -0.0049 + 0.0 -0.0046 + 0.0004 -0.0027 + 0.0018 -0.0002 £+ 0.0 -0.0049 £ 0.0001 0.0 £ 0.0
F-score | 0.4997 + 0.0242 0.5 £ 0.0054 0.499 + 0.005 0.5018 + 0.0085  0.4975 + 0.0204 0.51 £ 0.0 0.4983 + 0.0059  0.521 + 0.0287
kappa 0.0385 + 0.028 0.009 + 0.0055 0.01 + 0.0 0.0145 + 0.0089  0.033 + 0.0232 0.02 + 0.0 0.0115 + 0.0037 0.07 + 0.0
Acc 0.7119 + 0.0057  0.2842 + 0.0016 0.7187 + 0.0 0.7205 + 0.0062  0.7054 + 0.0418 0.2806 0.0001 0.7268 + 0.0109  0.7344 + 0.0054
I Ta b NMI 0.4021 + 0.0106  0.0565 + 0.0069 0.4062 + 0.0 0.4109 + 0.0283  0.367 4+ 0.0982  0.0825 + 0.0001  0.4062 + 0.0195  0.4161 + 0.0105
- ARI 0.2987 + 0.017  0.0007 4 0.0021 0.3081 £ 0.0 0.3058 + 0.0318 0.26 4 0.081 0.0028 + 0.0001  0.3038 + 0.0246  0.3161 + 0.0172
F-score | 0.1956 + 0.1259  0.1848 + 0.0083  0.1972 + 0.1243  0.2162 + 0.1419  0.2306 & 0.083  0.1659 £ 0.0005 ~ 0.245 + 0.1587  0.2495 + 0.1062
kappa | 0.3462 + 0.0409  0.0176 + 0.006 0.2771 £+ 0.0 0.3238 + 0.0694  0.3464 + 0.0783  0.0374 + 0.0001  0.3309 + 0.0051  0.3633 + 0.0425
Acc 0.5544 + 0.0006  0.3456 + 0.0002  0.5645 + 0.013 0.5667 0.0162 0.5606 + 0.0096  0.3452 + 0.0002  0.5606 + 0.0117  0.5742 £ 0.0005
MV sl NMI 0.1453 + 0.0006  0.0082 + 0.0021  0.1499 + 0.0103 0.1547 4+ 0.02 0.0282 + 0.0222  0.0146 + 0.0014  0.1503 £ 0.0168  0.1651 £ 0.0005
- ARI 0.0798 + 0.0008  -0.0006 + 0.0003  0.0834 + 0.0196  0.0831 £ 0.0203  0.0267 & 0.0199  -0.0001 £ 0.0003  0.0768 + 0.0153  0.0995 + 0.0007
F-score | 0.2783 £ 0.0523  0.3115 + 0.0006  0.3291 & 0.1343  0.3196 £ 0.1078  0.3055 £ 0.0457  0.2925 £ 0.054  0.3353 £ 0.1156  0.354 + 0.0175
kappa | 0.3104 + 0.0008 -0.0015 4 0.0011  0.3131 £ 0.0217  0.3184 + 0.027 0.1077 + 0.041 0.0008 &+ 0.0011  0.3044 + 0.0229  0.3301 + 0.0008
Acc 0.5177 £ 0.0364  0.3495 + 0.0005  0.505 £ 0.0585  0.5113 £ 0.0409  0.5137 & 0.0404  0.3489 + 0.0001  0.5155 + 0.0288  0.5359 + 0.0217
MLV 2 NMI 0.1046 + 0.0198  0.0137 + 0.0043  0.1001 £ 0.0329  0.1028 £ 0.0162  0.0175 & 0.0124  0.0155 &+ 0.0009  0.0769 + 0.0014  0.1103 + 0.0114
- ARI 0.0516 + 0.034 ~ -0.0002 + 0.0007  0.0588 + 0.0254  0.0575 + 0.0293  0.0237 + 0.0181  0.0001 £ 0.0002  0.0471 £ 0.0025  0.0604 + 0.0235
F-score | 0.2794 + 0.0638  0.3232 + 0.0214  0.3348 + 0.1015  0.2808 £+ 0.104  0.3283 £ 0.0549  0.3156 & 0.0383  0.3284 £ 0.1078  0.3463 + 0.0081
kappa | 0.1773 + 0.0547  0.0001 + 0.0025  0.1603 £ 0.0601 0.174 £ 0.0589  0.0913 4 0.0521  0.0006 + 0.0007  0.1418 4+ 0.0011  0.1945 + 0.0444
Acc 0.6098 + 0.0279  0.2898 + 0.0029  0.6171 £ 0.0016  0.6123 £ 0.0199  0.5962 &+ 0.0162  0.2787 + 0.0023  0.6214 + 0.0056  0.6329 + 0.0099
IV 2a sl NMI 0.0319 + 0.0336  0.0446 £ 0.015  0.0456 £ 0.0239  0.0323 £ 0.0122  0.0222 4 0.0116 ~ 0.0482 & 0.0238  0.0333 & 0.0147  0.0546 + 0.0129
- ARI 0.0164 + 0.0229  0.0002 + 0.0003  0.0281 + 0.0137  0.0186 £+ 0.0123  0.0074 & 0.0082  0.0005 + 0.0001 ~ 0.0193 + 0.0135  0.0363 + 0.0128
F-score | 0.2416 &+ 0.0519  0.2483 + 0.0078  0.2446 + 0.0443  0.2497 + 0.0427  0.2487 £ 0.0589  0.2313 £ 0.0511  0.2509 + 0.0406  0.2589 + 0.0518
kappa | 0.1156 + 0.0394  0.0264 + 0.008 0.1151 + 0.033 0.1 £ 0.0251 0.0829 + 0.0254  0.0417 £ 0.0014  0.116 + 0.0205 0.141 £ 0.0295
Acc 0.5872 + 0.0366  0.284 £ 0.0041 0.5996 + 0.0 0.6087 + 0.0148  0.5925 + 0.0173  0.2816 + 0.0126  0.6126 + 0.0031  0.6261 + 0.0037
IV 2a 2 NMI 0.0131 #+ 0.0066  0.0114 + 0.0108 0.0069 £ 0.0 0.0135 + 0.0071 ~ 0.0149 + 0.0094  0.0145 £ 0.0098  0.0153 £ 0.0073  0.0164 + 0.0066
- ARI 0.0036 + 0.0054 0.0 £ 0.0004 -0.0028 + 0.0 0.0039 + 0.0055  0.0037 £ 0.008  0.0004 + 0.0002  0.0041 £ 0.0077  0.0046 + 0.0063
F-score | 0.2455 4 0.0294  0.2488 + 0.008  0.2439 + 0.0243  0.2465 + 0.0312  0.2324 £ 0.0287  0.2411 + 0.047  0.2464 + 0.0448 0.2533 + 0.04
kappa | 0.0683 + 0.0175  0.0206 + 0.0055 0.0417 £ 0.0 0.0704 +£ 0.0192  0.0671 + 0.0214  0.0414 £ 0.001 0.0719 + 0.0277  0.0808 + 0.0198
Acc 0.4808 + 0.1144  0.2819 + 0.0035 0.5939 4+ 0.0 0.5642 + 0.0399  0.5948 + 0.0153  0.2792 + 0.0022  0.6151 £ 0.0016  0.6307 & 0.0043
IV 2a 3 NMI 0.025 £ 0.0086  0.0265 + 0.0104 0.0215 + 0 0.0256 = 0.0111  0.0163 + 0.0072  0.0276 £ 0.0098  0.0272 £ 0.0055  0.0291 £ 0.0091
- ARI 0.005 + 0.0069 0.0 £ 0.0003 0.0138 + 0.0 0.01 £ 0.0068 0.0026 + 0.0049  0.0004 + 0.0001  0.0148 + 0.0045  0.0164 + 0.0085
F-score | 0.2429 + 0.031 0.2422 + 0.0049 0.2444 + 0.04 0.2444 + 0.0299  0.2415 + 0.0254  0.2409 + 0.0416  0.2375 £ 0.0499  0.266 + 0.0464
kappa 0.062 + 0.0331 0.0169 + 0.0053 0.0828 + 0.0 0.0924 + 0.0214  0.0669 + 0.0193  0.0412 + 0.0021  0.1014 £ 0.0089  0.112 + 0.0263
Acc 0.4968 + 0.0013  0.496 + 0.0002 0.4973 £+ 0.0 0.4968 + 0.0014  0.4976 + 0.0018  0.4971 + 0.0003  0.4969 + 0.0003  0.4977 + 0.0028
IV 2% sl NMI 0.0034 = 0.007  0.0065 + 0.0105 0.0054 £+ 0.0 0.0052 + 0.012 0.0038 + 0.004  0.0062 + 0.0369  0.0017 + 0.0005  0.0074 + 0.0376
- ARI -0.0043 £ 0.0028  -0.0005 + 0.0004 -0.0011 £+ 0.0 -0.002 £ 0.0033  -0.0033 4 0.0039 -0.0018 + 0.0032 -0.0059 + 0.0008 -0.0043 + 0.0058
F-score | 0.4683 & 0.0528  0.495 & 0.0087  0.5025 + 0.0424  0.4142 + 0.0554  0.4791 £ 0.0432  0.4858 £ 0.0426  0.5029 £ 0.0235  0.5054 + 0.043
kappa | 0.0358 + 0.0261  0.0167 + 0.0108 0.0333 + 0.0 0.0325 + 0.0299  0.0417 + 0.0405  0.045 + 0.0051 0.0467 + 0.0103  0.0475 + 0.036
Acc 0.498 £ 0.0028  0.4959 + 0.0002 0.4959 £ 0.0 0.4971 + 0.0022  0.4983 + 0.0031  0.4971 £ 0.0017  0.4987 £ 0.0012  0.4992 =+ 0.0022
IV % 2 NMI 0.0041 +0.0049  0.0078 + 0.0118  0.0002 + 0.0001  0.0059 + 0.0056  0.0046 £ 0.0061 0.0162 + 0.072  0.0047 £+ 0.0018  0.0175 + 0.057
- ARI -0.0028 + 0.0057  -0.0005 + 0.0003 -0.0082 + 0.0001 -0.0031 + 0.0031 -0.0021 + 0.0062 -0.0017 £ 0.0034 -0.0019 £ 0.0022  -0.001 + 0.004
F-score | 0.4925 +0.0343  0.4971 + 0.0082 0.5 £ 0.0076 0.4883 = 0.0293  0.4842 + 0.0321  0.5025 £ 0.0113  0.4979 £ 0.0386  0.5113 + 0.0388
kappa | 0.0533 + 0.0388  0.0142 + 0.0098  0.015 + 0.0051  0.0342 + 0.0373  0.0567 + 0.0424 0.05 4 0.0011 0.0642 + 0.0138  0.0775 + 0.0277
Acc 0.6059 + 0.0182  0.3274 + 0.0062 0.6224 + 0.0 0.5954 +0.0342  0.5835 + 0.0252  0.3019 + 0.0067  0.6218 + 0.0011 0.6254 + 0.004
IV 3 sl NMI 0.0173 + 0.008  0.0181 + 0.0073 0.0084 £+ 0.0 0.0119 + 0.0039 0.0147 + 0.01 0.0126 + 0.0073  0.0159 + 0.0008  0.0184 + 0.0059
ARI -0.0057 £ 0.0056  -0.0044 4 0.0051 -0.0115 £+ 0.0 -0.0078 + 0.0025 -0.0037 + 0.0056 -0.0046 + 0.0029 -0.0065 + 0.0005 -0.0039 =+ 0.0053
F-score | 0.2488 + 0.0241  0.2459 + 0.0276  0.2466 & 0.0235  0.2475 £ 0.0241  0.2349 + 0.0248  0.2494 &+ 0.0219  0.2515 £ 0.0247  0.2584 + 0.0261
kappa | 0.0642 + 0.0228  0.0433 £ 0.011 0.05 + 0.0 0.0558 + 0.0121 ~ 0.0729 + 0.0186  0.0732 + 0.0046  0.0722 + 0.0046  0.0746 + 0.0079
Acc 0.6172 + 0.0139  0.3226 + 0.0086 0.6137 + 0.0 0.6021 = 0.0195  0.5943 + 0.0248  0.3019 £ 0.0019  0.6162 £ 0.0018  0.6253 + 0.0031
V3 NMI 0.0151 + 0.005  0.0153 + 0.0083 0.0144 £+ 0.0 0.0131 + 0.0037  0.0168 + 0.0131  0.0163 + 0.0046 0.016 + 0.004 0.0165 + 0.0052
- ARI -0.005 £ 0.0047  -0.0052 + 0.0023 -0.0039 + 0.0 -0.0066 + 0.0028 -0.0042 + 0.0099 -0.0036 + 0.0025 -0.0041 + 0.0037 -0.0034 + 0.0051
F-score | 0.2358 &+ 0.0316  0.2444 + 0.0206  0.245 + 0.0345 0.2374 £ 0.037  0.2309 4 0.0245  0.2463 + 0.0314  0.2447 + 0.0425  0.2544 + 0.0287
kappa 0.0767 + 0.021 0.035 + 0.0088 0.0711 & 0.0 0.0675 + 0.0177  0.0767 + 0.0296  0.075 + 0.0019  0.0761 + 0.0148  0.0796 + 0.0144
Avg Acc Rank 4.25 + 1.5877 7 + 0.4082 4.5 £ 1.7078 43333 + 1.1055  4.1667 &+ 1.5184 7 + 1.5811 3.1667 &+ 1.2133 1.0 £ 0.0
# Best Acc 0 0 0 0 0 0 0 12
Avg NMI Rank 5.0 + 1.7795 4.75 +£ 22776 6.0 £ 2.0817 4.9167 = 1.8008 53333 + 1.8856  4.1667 £ 2.0344  4.6667 = 1.795  1.0833 + 0.2764
# Best NMI 0 0 0 0 1 0 0 11
Avg ARI Rank 4.75 £ 1.0897 5.5 £2.8136 4.5833 + 27525  4.6667 + 1.748  4.8333 + 1.4625  5.1667 £ 1.9076  4.8333 £ 1.993  1.6667 + 1.6499
# Best ARI 0 2 0 0 1 0 0 9
Avg F-score Rank 6.25 4+ 1.4215 4.8333 + 1.2802  4.3333 £ 1.748 4.75 + 1.8314 5.9167 + 2.0999 54 2.3452 3.8333 + 2.0344 1.0 + 0.0
# Best F-score 0 0 0 0 0 0 0 12
Avg kappa Rank 3.5 + 1.3229 7.8333 £+ 0.5528  5.6667 + 1.4907 4.75 £ 1.5877 4.0 £ 1.4719 5.6667 + 1.748 3.5 + 1.3844 1.0 + 0.0
# Best kappa 0 0 0 0 0 0 0 12

results in Table II demonstrate that ConsEEGc outperforms
all state-of-the-art clustering algorithms for EEG clustering,
with ConsEEGc achieving the lowest average ranks of Acc,
NMI, ARI, F-score and kappa, as well as the largest number
of best Acc, NMI, ARI, F-score and kappa across all twelve
EEG datasets compared. In other words, although no label-
transformed connectivity constraints are initialized in the be-
ginning, our method still can obtain good clustering results
with the iteratively learning and optimizing strategy for the
multi-constrained objective function.

. ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.og/publications/rights/jndex.html for more information.
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2) Multi-Constrained Semi-Supervised Clustering Results:
We next compared the ConsEEGc with the state-of-the-art
clustering algorithms for semi-supervised EEG clustering, with
different connectivity constraints and fairness constraint in-
cluded. The connectivity percentage among EEG data is set as
{1%, 5%, 10%, 20%, 30%, 50%, 75%} and the fairness constraint
is set as the minimum value of the category ratio. The results
of this comparison, see Fig.2 (Only the results on II_Ia, II_Ib,
Il_Ta_Ib, IT_V_sl1, III_V_s2, and III_2a_s1 are presented, and
those on IV_2a_s2, IV_2a_s3,IV_2b_s1,IV_2b_s2,IV_3_sl1,

Xplore. Restrictions apply.
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(f) EEG Dataset: IV_2a_sl (# Cluster: 4, # Category: 4)
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Fig. 2. EEG clustering on the first six of twelve EEG dataset: (a) II_Ia, (b) IL_Ib, (c) II_Ia_Ib, (d) III_V_s1, (e) III_V_s2, and (f) IV_2a_s1 w.rt. Acc, NMI,
ARI, F-score, and kappa. All the results were calculated without using known EEG labels, e.g., when connectivity constraint is set 10% with known EEG
labels, then the rest 90% EEG signals are used to cluster and calculate the averaged Acc, NMI, ARI, F-score, and kappa.
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and IV_3_s2 are illustrated in Fig.S1 in Appendix F), were
achieved with those EEG data where those are used to build
constraints are excluded. The results clearly show that the
ConsEEGc yields the highest Acc, NMI, ARI, F-score and
kappa on different connectivity and fairness constraints for
twelve different EEG datasets, which indicates the superiority
of ConsEEGc on semi-supervised EEG clustering.

3) Execution Time Comparison: As analyzed in Section
V-D, the time complexity of ConsEEGc requires O(iter - n?),
which indicates that the running time of ConsEEGc mainly
depends on the number of EEG signals. But with the fast con-
vergence of ConsEEGc that will be introduced subsequently,
it can learn and output EEG labels in a short time. The
running time presented in Fig.3 (Only the results on II_Ia,
I_Ib, II_Ta_Ib, III_V_s1, II_V_s2, and III_2a_s1 are provided
here, and those on IV_2a_s2, IV_2a_s3,IV_2b_s1, IV_2b_s2,
IV_3_sl1, and IV_3_s2 are shown in Fig.S2 in Appendix G)
also indicates that ConsEEGc has competitive efficiency on
different EEG datasets with various sizes compared to state-of-
the-art clustering algorithms, thanks to its quick convergence.

Time Consumption

— k-means+'-+
KMMC n n
USPEC

HilllI

Time (s)
S
o

I_la_lb 1I_V.sl 1_V_s2

EEG dataset

1_la 1_lb IV_2a sl

Fig. 3. Average running time for semi-supervised EEG clustering on EEG
datasets II_Ia, II_Ib, II_Ia_Ib, III_V_s1, III_V_s2, and III_2a_sl.

E. Sensitivity Analysis

Supervised approaches, i.e., classification, are inappropriate
for unlabeled EEG data, and most unsupervised methods, i.e.,
traditional clustering, do not make full use of limited given
information of EEG data or just consider single constraint of
EEG data when clustering. We have designed a novel model
ConsEEGc to cluster unlabeled EEG data in a semi-supervised
way that considers multiple constraints such as connectivity
constraints, compactness-and-scatter constraint and fairness
constraint. Our experimental results demonstrate that our novel
technique ConsEEGc with multiple constraints achieved the
best clusters on various types of EEG datasets compared
to all state-of-the-art clustering algorithms that includes un-
supervised clustering, semi-supervised clustering with single
constraints, and fair clustering. Possible reasons for its ap-
parent superiority over other methods are that (1) ConsEEGc
utilizes multiple constraints that can constrain the correlations
from different perspectives of a priori knowledge, ignored by
previously reported clustering techniques and (2) ConsEEGc

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

potentially makes the best use of a priori knowledge of
partially labeled EEG data.

The clustering performance of ConsEEGc is also affected
by several factors that is mainly from three perspectives:
the percentage of label-transformed connectivity, the impact
of parameters in objective function, and the convergence of
ConsEEGc. Therefore, we also discussed their impact on the
clustering of ConsEEGc respectively in the following.

1) Impact of Label-Transformed Constraints: The clus-
tering results in the condition that the EEG data used to
build constraints are excluded (see Fig.2 and Fig.S1 in
Appendix F in the Supplementary file) demonstrate that
the clustering performance of ConsEEGc changes smoothly
along with the increase in the percentage of connectivity
constraints. We further evaluated the impact of connectiv-
ity constraints and the fairness constraint on ConsEEGc in
the condition that those EEG data used to build constraints
are included. Specifically, the connectivity percentage is
set as {1%, 5%, 10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 75%}
and the fairness constraint remains as the minimum of the
category ratio among any two categories. The cluster per-
formance of ConsEEGc applied to a range of EEG datasets
is clearly enhanced (see Fig.4, here only the results on
EEG datasets II_Ia, II_Ib, II_Ia_Ib, III_V_s1, III_V_s2, and
III_2a_s1 are presented, and those on IV_2a_s2, IV_2a_s3,
IV_2b _sl, IV_2b_s2, IV_3_sl, and IV_3_s2 are introduced
in Fig.S3 in Appendix H) with an increasing percentage
of connectivity constraints, according to Acc, NMI, ARI, F-
score, and kappa. Consequently, ConsEEGc can learn a better
label indicator with higher percentage of label-transformed
connectivity constraints from given a priori knowledge of EEG
data and then help produce correct labels for EEG data.

2) Impact of Regularization Parameters: The parameters in
our model of ConsEEGc include the kernel parameter o for
computation of Gaussian similarity of EEG data, and weight
parameters 1, vz, v3,v4,vs for the function terms in objective
function defined in Eq.(25). Here, we discuss the impact of a
single parameter by setting the values of other parameters to
10°, confining our assessment to three different EEG datasets;
II_Ia (Fig.5) in which connectivity constraints and fairness
constraint are set as 10% and 133/135, respectively), II_2a_s1
(Fig.S4 in Appendix I) in which connectivity constraints and
fairness constraint are set as 10% and 72/72, respectively),
and IV_3_sl (Fig.S5 in Appendix I) in which connectivity
constraints and fairness constraint are set as 10% and 40/40,
respectively. The results demonstrate that there is no linear
relation between the performance of ConsEEGc and these
parameters, but they clearly show that ConsEEGc yields
relatively best clustering performance when o, vy1, vz, V3, 74,75
are set around 10° w.xt. Acc, NMI, ARI, F-score and kappa.
Besides, ConsEEGc is more sensitive to 4 than o, 1, v2,v3, Vs
on EEG datasets II_Ia, IV_2a_s1, and IV_3_sl. This is espe-
cially so when 4 > 10' the performance of ConsEEGc is
considerably degraded.

3) Impact of Convergence: The convergence of ConsEEGc
for twelve EEG datasets, see Fig.6 (here only the results
on the EEG datasets II_Ia, II_Ib are presented, and those
on other EEG datasets are shown in Fig.S6 in Appendix J

Authorized licensed use limited to: Jiangnan University. Downloaded on October 07,2022 at 00:26:02 UTC from IEEEqXpIore. Restrictions apply.
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Fig. 4. The clustering performance of ConsEEGc w.r.t. Acc, NMI, ARI, F-score, and kappa in different constraints on EEG datasets II_Ia, II_Ib, II_Ia_Ib,
II_V_sl, III_V_s2, and III_2a_s1.
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Fig. 5. Parameter impact on ConsEEGc for EEG dataset II_Ia w.rt. Acc, NMI, ARI, F-score, and kappa.

of the Supplementary file), demonstrates convincingly that
ConsEEGc yields the locally optimal solution with relatively
low time cost, since ConsEEGc converges to local optima

within the first five iterations, and the impact of learning rate

on convergence is slight but ConsEEGc achieves the relatively

best results on 7 = 0.001 for most situations, particularly.

F. Ablation Analysis

To further illustrate the effectiveness of multiple constraints
on our method, we conducted the ablation analysis in this
section. The results illustrated in Fig.S7 and Fig.S8 clearly

demonstrate that the full model with multiple constraints
outperforms that without constraints. Due to the page limit,
please refer to the details in Appendix K.

VII. CONCLUSIONS

With the ever-increasing amount of unlabeled EEG signals
in BCI, disease diagnosis, rehabilitation, etc, analysis on
partially labeled or incorrectly mislabeled EEG has become

. ©2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.olr_:g
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Fig. 6. The impact of learning rate on convergence and performance of
ConsEEGc on EEG datasets II_Ia and II_Ib.

address the tough problem, this paper investigated semi-
supervised EEG clustering with multiple constraints from
original EEG datasets and proposed a novel approach that
simultaneously considers partial label-transformed connectiv-
ity and compactness-and-scatter-transformed fairness to cluster
partially labeled EEG signals, which, to the end, leads to a
quickly converging algorithm ConsEEGc. With the detailed
experimentation on twelve real-world EEG datasets, the re-
sults demonstrated the superiority of ConsEEGc over seven
state-of-the-art unsupervised, semi-supervised and constrained
clustering algorithms on partially labeled EEG signals.
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