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ShVEEGc: EEG Clustering With Improved Cosine
Similarity-Transformed Shapley Value

Guanghui Li"”, Jiahua Shen, Chenglong Dai

Abstract—As the number of unlabeled or mislabeled electroen-
cephalogram (EEG) increases dramatically in such applications as
cerebral disease diagnosis, rehabilitation, and brain-computer in-
terfaces, the supervised approaches that require labels or markers
become inapplicable. Unfortunately, there are few reports on unsu-
pervised studies for unlabeled EEG data, especially for unlabeled
EEG clustering. To address the challenging task, we propose an
effective approach named ShVEEGc for EEG clustering inspired
by an improved Shapley value in cooperative game theory. The
idea of ShVEEGec is first utilizing an improved cosine similarity
to measure the correlations of EEG data and then calculating
the improved Shapley value based on the inherent connection
between unlabeled EEG data, which considers both global con-
nections and local relationships potentially hidden in EEG data.
Thus, ShVEEGc not only has good anti-interference ability but
also can mine potential relationships among unlabeled EEG data.
The comparison experiments with fourteen state-of-the-art EEG
time series clustering algorithms on eleven real-world EEG datasets
with four standard evaluation criteria demonstrate the efficacy and
superiority of ShVEEGc for EEG clustering. Besides, the discussion
on the impact of several different similarity measures on ShVEEGc
also illustrates that the improved cosine similarity proposed in this
paper is more suitable for EEG data.

Index Terms—Cosine similarity, cross-correlation, EEG clus-
tering, shapley value.

1. INTRODUCTION

ITH the development of clinical medicine and brain-
W computer interface (BCI) technology [1], the study on
bioelectrical signals [2] for detecting [3], monitoring [4],
diagnosing and treating human diseases becomes significantly
essential [5], [6]. As the common bioelectrical signals, electro-
cardiogram (ECG) [7], EEG [8], [9], electrooculogram (EOG)
[10] and electromyogram (EMG) [11] are widely studied for
related applications in our daily life, especially the EEG.
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Electroencephalogram (EEG) is usually collected by inexpen-
sive, low-risk and easy-to-operate non-invasive equipment [12],
[13]. Besides, EEG data, which can be regarded as one specific
type of time series, has the characteristics of high complexity,
high dimensionality, non-stationarity, and low signal-to-noise
ratio [14]-[16]. Furthermore, as is known to all, EEG can
reflect the functional activities of the human brain and the status
of physical health [17], so it is widely used in the driver
drowsiness detection [18], [19], cerebral disease diagnosis [20],
monitoring, and treatment, including epilepsy (EP) [21], stroke
[22], Alzheimer’s disease (AD) [23] and Parkinson’s disease
(PD) [24]. In addition, EEG also plays an essential role in the
assistance and rehabilitation of patients with movement disor-
ders to improve their living quality [25]. In detail, the patients
can manipulate the wheelchairs or robot arms in their daily lives
to access the objectives through motion imagination, and it also
can achieve the actions that cannot be completed by themselves
by setting specific modes in advance [26]. These applications
have driven a surge in the number of multi-trial EEG, however
the lack of labels or incorrect labels in practical applications has
become the biggest limitation of EEG-based supervised learning
techniques. Therefore, to address new problems emerging in
EEG research, the unlabeled analysis technology has become a
promising solution, i.e., clustering methods [14]-[16], genera-
tive models [27], and autoencoders [8]. To the end, this paper
explores unsupervised EEG clustering methods and proposes a
new solution for it.

A. Motivation

As the number of unlabeled or mislabeled electroencephalo-
gram (EEG) increases dramatically in such applications as
cerebral disease diagnosis, rehabilitation, and brain-computer
interfaces, traditional supervised learning methods that require
high-quality labels are no longer applicable.Therefore, unla-
beled data mining technology, that is clustering, has become
a powerful analysis method when there is no label or a small
number of labels and the study of clustering has become a new
direction for unlabeled EEG data, especially how to use a small
amount of labeled data to analyze the unlabeled data to explore
the internal connection between the data.In addition, the current
research on EEG analysis is mainly focused on single-trial [28],
so the correlation between EEG data [29] is often ignored,
which contains a lot of valuable and interesting information.
Multi-trial EEG signals are considered to be a special type of
time series because of their high dimensionality, complexity,
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non-stationarity and low signal-to-noise ratio. Many time series
clustering methods have been proposed, which perform well
on traditional time series datasets [30], but these methods are
difficult to deal with special EEG time series.

As mentioned in [31], most of the previously published
algorithms utilized the concept of cluster center or cluster rep-
resentation to group unlabeled data, which is usually based
on global optimization or local optimization. On most time
series datasets, this category of methods is effective. However,
the clustering center will be severely disturbed by the noise,
high complexity, and extreme instability of EEG data. Moreover,
the clustering center only vaguely reflects the inherent concept
of clustering, not to mention that the clustering center has been
deteriorated by noise. Moreover, in the process of clustering,
only the distance between trials and the nearest cluster center
is considered, which seriously underestimates the importance
of other trials. Therefore, we need a clustering method that
can suppress noise interference and consider the inherent re-
lationship between EEG data. Besides, in order to solve the
problem of EEG data clustering, we propose a clustering method
based on the improved Shapley value [32] that is an important
concept in cooperative game theory [33]. In detail, the proposed
method comprehensively considers the global connections and
local relationships of clusters, which can effectively reduce the
degradation of noise.

In summary, we utilized the concept of Shapley value in
cooperative games to address EEG clustering and mapped it
to a convex cooperative game [34]. Cooperative games require
participants to cooperate to establish a collective rational coali-
tion. Shapley value is one of the classic solutions of cooper-
ative games, which can be understood as the contribution of
participants to the coalition. For a given cluster (coalition), we
calculate the improved similarity-transformed Shapley value of
un-clustered samples and then cluster them according to the
greedy principle. Remarkably, the proposed method emphasizes
the collective cooperation and internal connection among EEG
data.

B. Contributions and Outline

For the emerging unlabeled or mislabeled EEG data in afore-
mentioned applications, EEG clustering becomes a challenging
but valuable task. However, only a few related studies have
been reported so far [14]. In this regard, we proposed an EEG
clustering method based on an improved similarity-transformed
Shapley value in cooperative game theory and mainly addressed
three issues in EEG clustering: (1) the convexity of EEG
clustering-mapped cooperative game; (2) the calculation of the
Shapley value during clustering; and (3) the full consideration
of collective rationality and individual desires of the participants
(EEG data). The contribution of this paper is highlighted as
follows.

® We, inspired by cooperative game theory, propose an

improved Shapley value-transformed approach named
ShVEEGc to quantify the contribution of every EEG sig-
nal in coalitions (i.e., clusters), which fully considers the
collective rationality and individual desire of each EEG

signal. In detail, ShVEEGc clusters EEG data based on the
Shapley value of un-clustered EEG data, which can guar-
antee the inherent relationship among EEG data without
complex computation for cluster centers.

® We propose a modified similarity measure, which exploits

the cross-correlation theory to integrate the displacement
information into the cosine distance. This method can more
effectively measure the similarity of EEG data, thereby
improving the clustering ability of various clustering algo-
rithms.

® We propose a method to quantify the performance of sim-

ilarity measures on EEG datasets via three self-designed
evaluation criteria and carried out related experiments. The
experimental results show that cosine distance, correlation
and normalized cross-correlation have better characteriza-
tion capabilities.

® We also show the efficacy of ShVEEGc via a detailed

experimentation on eleven EEG datasets with respect to
several standard evaluation criteria such as rand index, F-
score, Fleiss’ kappa, and normalized mutual information.
Besides, the comparisons with fourteen state-of-the-art
EEG time series clustering algorithms further demonstrate
the superiority of ShVEEGc on EEG clustering.

The rest of the paper is organized as follows: The related
works on EEG time series clustering algorithms and time se-
ries similarity measures are summarized in Section II. Then,
the background knowledge of cosine distance, cross-correlation
theory and Shapley value is introduced in Section III. Section IV
presents in detail the proposed EEG clustering method, i.e.,
ShVEEGec, based on improved Shapley value, along with the
time complexity analysis. Subsequently, Section V shows the ex-
perimental results and discussions on the efficacy of ShVEEGc.
Finally, Section VI concludes the work of this paper and makes
a prospect for future work.

II. RELATED WORKS

The choice of clustering algorithm and similarity measure
is critical for clustering. In this part, we introduce clustering
algorithms and similarity measures for EEG time series.

A. Time Series Clustering

So far, most of the studies on EEG data focused on supervision
methods, especially classification [35]. There are few clustering
studies related to unlabeled EEG data [14]-[16]. Fortunately,
EEG data can be processed as a special type of time series by
reshaping EEG data to one-dimensional. Therefore, the time
series clustering methods provide a potential solution for EEG
clustering. In recent years, many time series analysis methods
have emerged, especially those based on cluster center search-
ing, such as k-means, k-Shape [36] and so on. Unfortunately, this
type of algorithms is subject to the clustering center optimiza-
tion, which probably raises the problems of center initialization
and convergence. Therefore, this type of methods may not be
practical for EEG data. According to the characteristics of time
series clustering algorithms, it can be roughly divided into six
categories.
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1) Classic Time Series Clustering: Among the classic clus-
tering algorithms, k-means is commonly considered the most
robust and efficient one for time series since it can easily apply
to various types of time series datasets. In detail, the k-means
allocates samples by calculating the Euclidean distance between
samples and the cluster center. However, on some datasets,
e.g., EEG, the accuracy of this algorithm is relatively low,
and it is easy to fall into a local minimum and cannot handle
the unbalanced datasets well. To address its drawbacks, many
variant algorithms of k-means have been proposed, including
km++ [37], RSFKM [38] and KMM [39]. To a large extent,
km-++ solves the problem of high convergence uncertainty of the
k-means algorithm with probability distribution, which requires
the mutual distance between the initial cluster centers to be as far
as possible. This method inherits the shortcomings of k-means
that are very sensitive to outliers and tend to converge locally,
although it can cluster time series more efficiently. To solve these
problem, RSFKM was subsequently proposed, which integrated
the robustness and sparsity of clustering. Further, KMM forms
a bipartite graph with candidate data and multiple sub-cluster
centers, and applies rank constraints to cluster, so it can handle
particular distribution datasets, such as crescent-shaped datasets
that k-means cannot deal with.

2) Feature Selection-Based Time Series Clustering: This cat-
egory of clustering methods mainly includes UDFS [40], NDFS
[41] and RUFS [42], which first extracts distinguishable features
from the data and then performs standard k-means for clustering.
This type of clustering algorithms has many drawbacks, such
as high computational complexity of feature extraction, too
many parameters that need tuning, too much human supervision,
and feature loss. Furthermore, due to the high dimension and
the low signal-to-noise ratio of EEG data, it is challenging to
apply feature selection-based clustering algorithms to cluster
EEG data, although they have achieved a great of progress on
traditional time series clustering.

3) Similarity Adjacency Matrix-Based Time Series Cluster-
ing: This type of clustering algorithms mainly includes HC
[43], SC [44] and mwcEEGC [15]. HC defines the similarity
or distance between network nodes through a given network
topology and then uses single-connection hierarchical clustering
or fully-connected hierarchical clustering to form a tree-like
hierarchy of network nodes. Unfortunately, this tree structure
is easily degraded by outliers. SC is a clustering method based
on the spectrogram theory, which has the advantage that it can
perform on the sample space of any shape and converge to the
global optimal solution, compared to the traditional clustering
methods. However, SC is very dependent on dimension reduc-
tion techniques and high-quality similarity matrix, which are
challenging to satisfy, especially on the EEG datasets. Besides,
the newly proposed mwcEEGC is a method for specifically clus-
tering EEG data. Although mwcEEGc can well overcome the
above shortcomings, its similarity measure is highly complicated
and requires artificial thresholds to cut the EEG-mapped vertices
in a weighted graph.

4) Distance-Based Time Series Clustering: This category of
clustering algorithms mainly includes DBA [45] and K-SC
[46]. These methods have three procedures for clustering: 1)

the choice of distance measures; 2) the definition of cluster
centers; 3) the definition of optimization function. In detail,
DBA clusters time series by calculating dynamic time warping
(DTW) and DTW barycenter averaging (DBA). K-SC uses a
scale-and-shift-invariant similarity measure and seeks cluster
centers according to the spectral norm of the similarity matrix.
Unfortunately, these methods require many iterative operations,
and they are sensitive to outliers and cannot well handle the
non-stationary data well.

5) Shape-Based Time Series Clustering: As Paparrizos [36]
mentioned, shape/shapelet-based clustering algorithms, such as
k-Shape [36], MTEEGc [14] and USSL [47], cluster time
series by capturing shape patterns or shapelets of time series
with the scale-and-shift-invariant similarity. In detail, this type
of methods first extracts the shape/shapelet information from
the time series data as a reference feature and then performs
clustering based on the shape/shapelet feature. Both k-Shape
and MTEEGc are optimized by extracting time series features
and then converting the optimization function into the Rayleigh
quotient. These two methods usually take much time to cal-
culate the shape/shapelet features and the clustering results
are unstable and approximate. Furthermore, USSL scans the
entire time series to extract local shapelet features and has good
interpretability. However, this method sets many parameters that
require experts’ knowledge, so it seems not to be effectively
applied to EEG datasets.

6) Density-Based Clustering: This kind of methods mainly
includes DBSCAN [48], OPTICS [49] and SNN [50], which
mainly utilizes certain density estimation methods to divide
high-density areas into different clusters. DBSCAN needs to
preset the radius (¢) and threshold (MinPts) based on experts’
experience. However, this method is difficult to deal with clusters
of different densities, such as EEG dataset for healthy subjects
and patients, and it is sensitive to input parameters. As an
improved DBSCAN, OPTICS is not sensitive to the input pa-
rameters and able to identify outliers. For another density-based
clustering, SNN relies on the KNN strategy and is very sensitive
to the value of k. In short, density-based methods have poor
adaptability for density-imbalance datasets, and their parameter
tuning is also a tough task. To address these issues, a density
ratio strategy is proposed in [51], which includes R_DBSCAN,
R_OPTICS and R_SNN, and the methods mentioned above are
modified to use density estimator to compute density-ratio.

B. Similarity Measures

It is generally believed that the study of similarity measures
is more important than the study of clustering algorithms be-
cause similarity measures can help algorithms characterize the
correlation and irrelevance between data [36], [52]. There are
many similarity measures, but as far as we know, no studies
have reported which similarity measure is most suitable for
EEG data. In Section V-E, we conducted a detailed experi-
ment on the suitability of similarity measures for EEG data.
The widely used similarity measures include Euclidean dis-
tance (ED), dynamic time warping (DTW) [45], cosine dis-
tance (COS), Minkowski distance (MK), CityBlock distance
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(CB), correlation (CL), spearman (SPM) and normalized cross-
correlation (NCCc) [53]. Euclidean distance is considered a
kind of similarity measure with high robustness, good effec-
tiveness and high efficiency, but unfortunately, on the EEG
datasets, its performance is not good because it cannot capture
the flexible change of EEG time series. Dynamic time warping
is considered a very effective similarity measure, minimizing
sequence similarity by distorting time series, but it has high time
complexity and is over-optimized. In most cases, DTW is better
than ED, but on the EEG datasets, the performance of DTW is
unsatisfactory. As a modification of DTW, constrained dynamic
time warping (cDTW) [54] shows better measuring efficiency
and accuracy than DTW, but its constraints such as the window
range and slope constraint need adjusting repeatedly, so it is
not suitable for high-dimensional EEG data. Cosine distance
measures the cosine value of the angle between pairwise time
series, which can reflect the similarity in the sample space, but
ignore the magnitude of the vector. MK is defined as the distance
of Minkowski space, which is a space-time composed of one
time dimension and three space dimensions, but its parameter
needs to be determined by iteration. CityBlock, also called block
distance, is a special case of Minkowski distance and it can be
used to calculate the distance between intersections. Correlation
represents the degree of correlation between two random vari-
ables, and SPM evaluates the monotone relationship between
two random variables. Further, normalized cross-correlation
can reflect the maximum connectivity of time series, and it is
competitive to DTW. However, it only considers the maximum
connectivity between time series.

III. PRELIMINARIES

This section mainly introduces the preliminaries that we used
in our method, including cosine distance, cross-correlation and
Shapley value in cooperative game theory.

A. Cosine Distance

Cosine distance [55] uses the cosine value of the angle
between two vectors in a vector space to measure the differ-
ence between two individuals. A vector is a directional line
segment in a multidimensional space. To determine whether
the directions of the two vectors are the same or not, the law
of cosines is used to calculate the vector’s angle. Given two
vectors € = (z1, ..., &) and y = (y1, . . ., Ym), the traditional
cosine distance (T'C'D) is defined as

Do is1 TiYi
\/Zz 1‘:62\/21 1yz

where TCD(x,y) € [0,2], and the smaller the TCD is, the
higher the similarity is. Traditional cosine similarity (7°C'S) can
be obtained by T'C'D. Namely,

TCD(z,y)=1-—

ey

where TC'S(x,y) € [—1,1], and the larger the TC'S is, the
higher the similarity is.

B. Cross-Correlation

As a widely used signal processing method, traditional cross-
correlation (T'C'C) [56] generates a sequence containing dis-
placement information through shifting or sliding. This displace-
ment sequence represents the connectivity of different segments
of two time series. 7'C'C' can process time series of different
lengths, but we just need to use it to process EEG sequences of

equal length in this paper. Given two vectors = (21, . . ., T.,)
andy = (y1,- -, Ym), TCC can be simplified to
m—|d]
TCCs(@,y) = > (Tits i), 3)
i=1
where ¢ is shift factor of vector  whose range is (—m,m). As

all ¢ are considered, the cross-correlation sequence (i.e., TC'C')
contains 2m — 1 values.

In order to clarify the calculation of T'C'C' simply, inspired
by [14], we fix y and then slide x over y to calculate the point-
to-point inner product for each shift § of «. Then, the part of x
that slides away from y can be replaced by 0. To calculate the
cross-correlation, we only need to take the inner product of the
fixed y with the sliding sequence «. The sliding sequence x can
be expressed by (4).

5]
——
0,0, 21,20, .. Ts), 6>0 @
€5 = (155 s Tin—1,Tm, 0,...,0), § <0’

[6]

where s has 2m — 1 expressions, corresponding to 2m — 1
values of T’C'C' . For the convenience of calculation, the (3) can
also be equivalently expressed as

6>0
§5<0

m—4§
Dot Tits " Yis

TCC
6(w TCC,(;(y, m)?

y) = (5)

C. Shapley Value

The Shapley value [57] is one of the solutions to the static
cooperative game [33]. Before introducing the Shapley value,
we first make a brief introduction to the cooperative game.

1) Cooperative Game: Cooperative game is a game in which
the interests of both coalitions can be increased, or at least the
interest of either coalition is increased, while that of the other
coalition is not degraded. In a cooperative game, players can be
united into a binding and enforceable game coalition. Further,
the cooperative game emphasizes collective rationality, fairness
and justice. Cooperative games can be represented by set algebra
(N,v), where N = {1,2,3,...,n} denotes the set of players,
and v : 2" — R represents the value function. Payoff allocation
is the most important concept of cooperative games,and we
use p = {pl,pg, .. .,pn} to represent it. It is important to note
that each player’s share of payoff in the coalition should not
be less than the payoff earned by operating individually, that
is, p; > v(i) where ¢ € N. Therefore, a cooperative game has
many solutions, and of course, most of them are undesirable. The
desired solutions to static cooperative games are mainly located
in the core [58], stable sets, Shapley value, negotiation sets,
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kernel and nucleolus, and they probably obtain different payoff
assignments for players.

2) Shapley Value: Although the cooperative game has many
solutions, many unique solutions have emerged with its de-
velopment, the most important of which is the Shapley value.
The important breakthroughs and subsequent developments of
cooperative games are largely derived from the proposal of the
Shapley value, which portrays an intuitive and fair distribution
scale. The formula for calculating the Shapley value of player ¢
is defined as

av= 3 BRI g iy (s,
SCN\{i} ' ©

where 7 € IN and S is subset of IN, which reflects the aver-
age marginal contribution of players to the coalition. It should
be noted that |S| represents the number of players in the
game. The Shapley value can be expressed as ¢(IN,v) =
(901(N7/U)7 902(N’ U)v R QDn(va))

In order to simplify the calculation of Shapley value, we refer
to [58]. For the | IN|! permutations in the cooperative game, the
permutation orders ({2) can be expressed by (7).

Q.s={ieN:ei)<s} (se{l,2,...,|N]}), D

where e represents the permutation of the players and (i)
represents the position of player ¢ in the permutation ¢, so the
payoff vector (p°) can be calculated by (8).

p,f = (QE,E(i)) — v (QE,E(i)*l) (VZ = 17 27 ct ‘N|) (8)

According to Shapley’s conclusion [59], the cooperative
game is convex if its Shapley value (¢) is the center of the payoff
vector (p°), that is

1 €
PiN.v) = > s ©)
ecw
where W is the set of all permutations of IN. The convexity of
the cooperative game is proved in Section I'V-C.

IV. SHVEEGC: SHAPLEY VALUE INSPIRED EEG CLUSTERING

This paper proposes a novel clustering method, that we call
ShVEEGc, for EEG based on normalized cosine-based similar-
ity measure, and improved Shapley value.

A. Improved Cosine-Based Similarity

In order to better measure the similarity of EEG data, we de-
signed an improved cosine-based distance that fuses the spatial
angle information and sequence displacement information, that
is denoted by dist. Specifically, given two EEG signals e; and
e;, the improved cosine-based distance is defined as (10), which
consists of two items: traditional cosine distance (7°C'D) and
cross-correlation-mapped displacement information (Disp).

dist(e;,e;) = 5 - TCD(es,e;) + (1 - a) - Disples. ;),
(10)
where Disp € [0,1] and TCD € [0, 2]; « is the weight coeffi-
cient of TC'D and Disp, and o € [0, 1].

Although many studies use the maximized cross-correlation
value as the similarity, such as [14], [16], [36], [53], this measure
only considers the maximum connectivity of two sequences and
the largest connected segment may also be a coincidence (i.e.,
EOG noise). Consequently, it ignores the overall connectivity
of sequences. Therefore, we consider the global displacement
information Disp to modify cosine distance for EEG data.
Specifically, the displacement information Disp is defined as

1
Z TCC(;(GZ',G]').

2m —1
de[—m,m)]

Disp(e;, e;) = (11)
Obviously, similar EEG series have similar displacement in-

formation. In other words, the smaller the dist, the more similar
the two EEG series.

B. Cooperative Game-Mapped EEG Clustering

Given an n-trial EEG dataset E with length of m, we need to
redefine dist as a similar function ICOS = f(dist) : [0,1] —
(0, 1], where IC'OS and dist denote the improved cosine-based
similarity and the degree of dissimilarity (also known as dis-
tance) between two EEG series, respectively. More specifically,
f is a monotonic non-increasing similarity function defined
on dist : E x E — [0, 1]. For scale invariance, the similarity
function f is defined as:

dist (e;, e;)

distmax + 17
where dist,ax denotes the maximum distance of all pairwise
EEG series.

In our method, each EEG signal e is mapped as a player
in a cooperative game and the number of players is the size
of the EEG dataset: |E| = n. Furthermore, we define a value
function v, which is directly related to the establishment of
cooperative games. Players in a cooperative game need to co-
operate with each other to maximize the overall value of the
coalition expressed by v and each of them is forbidden to build
an individual coalition (i.e., only one player in the coalition),
namely v(e;) = 0. Mathematically, the value of coalition C can
be calculated by (13).

w(C):% > fdist (e e;)).

e,i,ejeC
e;#e;

ICOS = f (dist (e;,e;)) = 1 (12)

(13)

C. Convexity of EEG Clustering Cooperative Game

According to Shapley’s theory [59], the convexity of the EEG
clustering-transformed cooperative game ([N, v) is equivalent to
proving the value function v is convex. In other words, for any
two coalitions C' and D (satisfying C C D C E), it’s to prove

o(C U {e;}) —v(C) <v(DU{e}) —v(D),  (14)

where the value of v(C' U {e; }) — v(C') represents the marginal
distribution of 7 in coalition C. We can see from the (14) that in
convex cooperative games (IN, v), the marginal contribution of
players increases as the size of coalition increases.

Theorem 1: The EEG clustering-mapped cooperative game
with the value function defined in (13) is convex.
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Proof: According to [59], the marginal contribution of EEG
clustering-transformed cooperative game can be calculated by
(14), i.e.,

v(DU{e;}) —v(CU{e;})

> fdist(ej,en)) + > f(dist (ej,er))

ej,ep€D e;eD
ej#ek
1 . .
—5 D [fldist(ejer)) = Y f(dist(ej,ex))
EJ,ekGC ejEC
ej#ek

- % Z f (dist (ej,ex)) + Z f (dist (ej,ex))

ej,ep,cD\C e;eD\C
ejFer e,cC
+ Y f(dist(ej,e)

eJ'ED\C

=v(D)—v(C)+ > fl(dist(ej,e;))
e;eD\C
>v(D) —v(C) = Eq.(14).
Consequently, the EEG cooperative game established by
v(C) = 3 Y e, e;ec f(dist(e;, e;)) is convex. [
ei7e;

D. Shapley Value in EEG Clustering

As Theorem 1 indicates, the EEG clustering-transformed
cooperative game is convex, so the Shapley value ¢ can be
equivalently calculated according to (8) and (13).

Theorem 2: The Shapley value of our EEG clustering-
transformed cooperative game can be calculated with (13).

Proof: According to (8) and (13), the Shapley value of our
EEG clustering-transformed cooperative game can be equiva-
lently written as

0i(N,v) ‘N|, > o — 0 (Qeeiy-1)
ecw
‘N|' Z Z f(dZSt (eiaej))
eeW | e(j)<e(m)<e(q)

-

e(j)<e(m)<e(i)—1

\N|'Z Z f(dist (e;, ej)).

eeW e(5)<e(i)

[ (dist (e;, e;j))

Since there are (|IN| — 1)! permutation orders for any EEG
data e; € E, there are (|IN| — 2)! permutation orders for each
of other EEG data e; € E\{e;}. To the end, the Shapley value

can be simplified to (15).
(IN] —2)!
0 = TN Z |N| — X;Ef (dist (e;, e;))
e;c
JFi

1 .
=3 2 fist(ese;).

EJ‘EE

J#i
5)
|
Considering that the EEG dataset itself is noisy and coop-
erative games pursue collective rationality, we put forward a
combination of collective rationality and individual desire in

our method, to improve Shapley value, which is defined as

pi=38 3 1 dist (ex,€)+(1-B) - mas( S (dist(e:)),

EjEE
J#i
(16)
where [ €[0,1] is the weight coefficient, and

mazx(f(dist(e;))) denotes the similarity between e; and
the trial with the highest degree of cooperation among the EEG
data that cooperate with e;.

E. ShVEEGc Algorithm

Algorithm 1 describes the primary process of ShVEEGc. First
of all, the algorithm requires | K| initial clusters, and it can be
generated by k-means or directly set according to the trials of
original EEG datasets. In practice, the clusters are initialized by
using the clusters near cluster centers generated by k-means, and
we set the size of each cluster to be around 10 (see Line 1).

The proposed algorithm needs to repeatedly calculate f(dist),
so we can calculate the similarity matrix (i.e., s¢m) in advance
for subsequent queries, see Lines 2-6. First, we calculate the
Shapley value for each cluster of un-clustered trials, see Lines
9-13. Then, according to the greedy principle, we globally search
for the trial with the largest contribution (i.e., largest Shapley
value) and assign it to the corresponding cluster, and meanwhile
update the Shapley value matrix. The above process of searching
and updating is repeated until set G is empty (see Lines 14-
19). It should be noted that when updating the Shapley value
matrix, only the links related to the newly added trial need to be
updated. Subsequently, according to the degree vector of each
cluster, we select the trials with the largest degree as centers
and regenerate the initial clusters at the same time. The size
of the initial clusters remains unchanged, and the trial clusters
with the greatest correlation to the central trials are selected as
the initial clusters, see Lines 20-24. Finally, we count the sum
of the average values of multiple coalitions (i.e., clusters) as
the iteration termination condition, see Lines 25-29. If the total
contribution drops, the iteration will terminate.

E. Time Complexity of ShWVEEGc

ShVEEGc uses an improved cosine similarity and improved
Shapley value for EEG clustering. The most fundamental is the
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Algorithm 1: ShVEEGc.

Input: «, 3: Weight coefficient;
E,«m = {e1,ea,...,e,}: EEG dataset with n EEG
signals; num_inter: Number of iterations;
K ={1,2,3,...}: Set of cluster serial numbers;

Output: C'1,Cs, ..., C g : Cluster sets of EEG;

1: [Initialize Ck(k € K), G = E;

Coalition_Value = 0;

2: fori=1tondo

3: for j =itondo

4: sim(e;, e;) < f(dist(e;, e;)) with (10)-(12);

5: end for

6: end for

7. for inter = 1 to num_inter do

8: GZG\{ClUCQU"'UC‘K‘};

9: fori=1to|K|do

10: for j = 1to size(G) do

11: Pij %Bze]fgicl Sim(ej,ek)-i—(l—ﬂ) .
max(sim(e;)) v&fith (15) and (16);

12: end for

13: end for

14: repeat

15: [i, j] < max(pij);

16: CZ :CZ'U{ej};

17: G=G\{e;};

18: Update ;; with (15) and (16);

19: until G = ;
20:  fork =1to|K]|do

21: C_sim = sim(CY, Cy);

22: C_D = sum(Cy_sim);

23: Re-initialize C'(k € K) with C,_D;

24 end for

25: new_Coalition_V alue <
S ek size(Ck?;)((égzk(i)(Ck)_l)) with (12) and (13);

26: if new_Coalition_Value < Coalition_V alue
then

27: break;

28: end if

29: Coalition_V alue = new_Coalition_V alue;

30: G=F;

31: end for

improved cosine similarity calculation, which needs repeatedly
computing during the clustering process. In practice, we calcu-
late the improved cosine similarity in advance and store them for
the following usage. When calculating Shapley value, we only
need to query the similarity matrix without extra computing, so
it greatly reduces the calculation time.

1) Time Complexity of Improved Cosine Similarity: The im-
proved cosine similarity can be transformed into calculating
Disp and TCD separately. However, to calculate Disp, we
must first calculate cross-correlation curve whose complexity
derived from (3) is O(m?), where m represents the length
of EEG data. Refer to [60], Fast Fourier Transform (FFT)

reduces the time complexity of TCC' to O(mlogm). There-
fore, the time complexity of calculating Disp is O(mlogm +
m). To the end, given n EEG data, the time complexity is
O(max{n?*mlogm + n?m,m?*n?}) = O(m?n?).

2) Time Complexity of Improved Shapley Value: As (16)
indicates, the time complexity of Shapley value computation
for one EEG signal is O(n). Hence, the time for n EEG data is
required O(n?), see Lines 9-13 in Algorithm 1. Besides, the time
complexity to update and maintain Shapley values is O(l%),
where K denotes the set of cluster numbers (see Lines 14-19).

3) Overall Time Complexity: To sum up, the exact time com-
plexity of ShWWEEGc to cluster n-trial EEG datais O (| K |ynm +
n?m? 4+ y[n? + % +|K|(n? +n)]), where v denotes the
number of iterations. In fact, v = | K| < n < m commonly,
so the time complexity of ShVEEGc can be expressed as
O(n3 + n?m?), which indicates that the clustering efficiency
seems to be low on large-scale EEG datasets.

V. EXPERIMENTS

This section introduces the details of EEG datasets used in our
study, evaluation criteria and baseline algorithms. Subsequently,
we present the experimental results of ShVEEGC compared to
fourteen state-of-the-art EEG time series clustering algorithms
on eleven real-world EEG datasets, along with sensitivity anal-
ysis and similarity measure impact analysis.

A. EEG Datasets

In order to propose a general clustering algorithm for EEG
data, we have to adopt multiple paradigms for EEG datasets and
use some subjects’ data from them. As shown in Table I, four
types of EEG datasets are applied to evaluate the algorithms’
performance, including (1) Two-cluster slow cortical potentials
(SCPs') datasets, i.e., #1 bcill_I_a and #2 beill_I_b, recorded
from a healthy subject and an artificially respirated ALS patient.
It is worth noting that dataset #3, i.e., bci_I_a&I_b, is a mixture
of dataset #1 and dataset #2 employing downsampling and delet-
ing channels; (2) Three-cluster mental imagery EEG datasets,’
i.e., bcilll_V_sl~bcilll_V_s3, spatially filtered through a sur-
face Laplacian from 3 healthy subjects; (3) Four-cluster mo-
tor imagery EEG datasets,® i.e., bcilV_2a_sI~bcilV_2a_s3,
including imagination of movements of left hand, right hand,
both feet and tongue, from 3 healthy subjects; (4) Two-cluster
motor imagery EEG datasets?, i.e., bcilV_2b_s ~ bcilV_2b_s2,
including imagination of movements of left hand and right hand,
from 2 healthy subjects. Importantly, the aforementioned EEG
datasets are originally labeled, so we removed those labels for
clustering in this paper and used all EEG channels, except for
the dataset #2, where we kept the vEOG channel (i.e., vertical
eye movements channel). In addition, all the EEG datasets are

'The SCPs datasets are publicly available online at https://www.bbci.de/
competition/ii/.

2The mental imagery datasets are publicly available online at https://www.
bbci.de/competition/iii/ for free.

3The motor imagery datasets are also publicly available online at https:/www.
bbci.de/competition/iv/.
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TABLE I
EEG DATASETS DETAILS

S/N Dataset Detailed Desciption Size (,)f EEG Dataset f# of # of . f# of .
(Trials xLength) Channels Clusters Trial Proportions
Self-regulati f SCPs fi
#1  beill La eHireguiation of STES from 268%5376 6 2 135:133
a healthy subject
#2  beill Lb Self-regulation of SCPs from 2008064 7 2 100:100
an artificially respirated ALS patient
Mi #1 health j
#3  beill [agr b Vixed dataset# I (one healthy subject) 468%5376 6 4 135:133:100:100
and dataset # 2 (an ALS patient)
#4 beilll_V_sl Mental imagery data spatially filtered 3488x96 1440:928:1120
#5 beilll_V_s2 by means of a surface Laplacian 3472x96 8 3 1472:880:1120
#6 bcilll_V_s3 from 3 healthy subjects (s1,s2,s3) 3424 x96 1104:1185:1135
#7 bcilV_2a_sl Multi-class motor imagery dataset
#8 bcilV_2a_s2 (left hand, right hand,feet and tongue) 288 %6886 22 4 72:72:72:72
#9 bcilV_2a_s3 from 3 healthy subjects (s1,s2,s3)
# 10 bc%IV_Zb_sl . Motor imagery dataset (left .hand and 120939 3 ) 60:60
#11  bcilV_2b_s2  right hand) from 2 healthy subjects (s1,52)

preprocessed by z-normalization before clustering and reshaped
to one-dimension, which is used in [14]. Besides, we do
not adopt any preprocessing techniques (e.g., band-pass filter-
ing, time-frequency variation and feature extraction) because
specific preprocessing techniques cannot cope with datasets
with multiple paradigms. The datasets used in this paper are
available at https://github.com/Jackie-Day/EEG-data-and-
descriptions and the code of our work is publicly available at
https://github.com/shenjiahua36/shveegc.

B. Evaluation Criteria

Seven evaluation criteria are used in this paper, including
rand index (RI), F-score, Fleiss’ kappa (k), normalized mu-
tual information (NMI), discrimination ability (DA), category
difference (CD) and composite indicator (CI). Particularly, the
first four are used to evaluate the performance of clustering
algorithms, which are widely used to evaluate the performance
of clustering methods [14]-[16], and the last three are used
to evaluate the ability of similarity measures on EEG data.
The last three criteria are designed in this paper and com-
prehensively reflect the prior distribution of intra-cluster com-
pactness and inter-cluster scatter, which is based on similarity
matrix.

® Rand index (RI) is a common and naive measure of clus-

tering quality, which is calculated based on the confusion
matrix. Mathematically, RI = %, where

TPTN,FPFN stand for the number of true positives, true

negatives, false positives and false negatives, respectively.

The value range of R/ is [0,1], and a larger value means

that the clustering results are consistent with the real

situation.

® F-scoreisaindicator derived from RI and comprehensively
weighs the precision (p) and recall (r) by setting a scale
parameter 8 > 0. [ is usually set according to the actual

demand for p and r, and 8 = 1 in this paper. Mathemati-

TP
cally, F-score = (1 + 3?) - 5fp+r,wherep = TPirD and
_ _ TP
"= TPIFN" ' o
® Fleiss’ kappa (k) 1is a statistic used to evaluate

the consistency of multiple clusters. Consistency ra-
tio (P) and overall random agreement (F.) are re-

quired to calculate Fleiss’ kappa. In detail, k = £ g
where ﬁ = m(21—1 Z] 1 n n) and P e =

E§:1(ﬁ Zfil nij)%.

® Normalized mutual information (NMI) is an infor-
mation measure that measures the degree of agree-
ment between two data distributions. Specifically, it
is used to calculate the correlation between two
sets of events (ie clusters) Mathematically, NMI

N
-2 1 C” -lo,
Py g(c < )c,. , where N, C,
T4 C 10@;( L)+3058 Cijlog(RF)
calC B) and C; (C ) denote the number of samples, a

confusion matrix, the number of set A(B) and the sum of
elements in matrix C, respectively.

e Discrimination Ability (D A) measures the ability of a sim-
ilarity measure to distinguish EEG data, which is defined
as

ﬁ EkeK DS

DA =
TSURTT) ki gk DSkik;

A7)

where DSy, 1, represents the degree of similarity between
clusters; DSy, denotes the degree of similarity within clus-
ters; DSkx;, = m > emecy, similarity(em, en)
e,cC ki

and DSj, is a special case of DSk k; when i = j. The
bigger the D A, the better the dlscrlmlnatlon ability of the
similarity measure.

e Class Difference (C'D), different from DA that ignores
the dimension, measures the differences between the same
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TABLE I
EEG CLUSTERING RESULTS ON ELEVEN EEG DATASETS WITH RESPECT TO RI,FF-SCORE,x AND NMI

Dataset Measure km++ KMM  UDFS NDFS RUFS SC HC DBA K-SC  MTEEGc k-Shape R_SNN gégi RBM  ShVEEGce

RI 0.5256 04982  0.4982 0.5324 0.5498 0.5297 0.4982  0.5051 0.4983 0.5978 0.5160  0.4982  0.4982  0.5451 0.5954

#1 F-score 05250 0.5056 0.4970 0.6306 0.5112 0.5254 0.4925  0.5460  0.4989 0.5728 0.4675  0.5075  0.5037  0.6530 0.7201

K 0.2299  0.0131  0.0188 0.2618 0.3207 0.2512 0.0076 ~ 0.0937  0.0185 0.2158 0.1853  0.0166  0.0000  0.3060 0.4386

NMI 0.0411  0.0002 0.0004 0.0509 0.0757 0.0466 0.0201  0.0118  0.0215 0.0302 0.0260  0.0002  0.0000  0.0686 0.1903

RI 0.4994 04978  0.4978 0.4999 0.5073 0.4990 0.4975  0.4982  0.4980 0.5397 0.4975 04975 04975  0.4977 0.5088

© F-score 05070 04915 0.5005 0.5350 0.5650 0.5170 0.5050  0.5150  0.4990 0.5732 0.4985  0.5000  0.5000  0.4900 0.5750

K 0.0560 0.0170  0.0250 0.0700 0.1400 0.0540 0.0100  0.0300  0.0260 0.1000 0.0070  0.0000  0.0000  0.0200 0.1500

NMI 0.0029 0.0124  0.0005 0.0036 0.0452 0.0022 0.0235  0.0044  0.0008 0.0011 0.0001  0.0000  0.0000  0.0003 0.0313

RI 0.7313  0.7392  0.6987 0.7419 0.7401 0.7356  0.2599  0.6707  0.6147 0.6855 0.6915 05941  0.2537  0.5783 0.7686

# F-score 02641 04857 02011 0.3440 02970 0.3109 0.2799  0.2650  0.2449 0.6987 02536 0.2543  0.2885  0.3590 0.6154

K 03612 03174 03620 0.3133 0.3212 0.3822 0.0065 0.2401  0.1688 0.3716 03476 0.1535  0.0000  0.2250 0.4833

NMI 0.4119 05262  0.2987 0.4272 0.4221 04288 0.0346  0.1806  0.1546 0.2875 0.2689  0.0810  0.0000  0.1641 0.6119

RI 0.5744 04150 0.5695 0.5747 0.6058 0.5930 0.3456  0.5650  0.5913 0.5892 0.5922  0.3896  0.4554  0.5655 0.6352

#4 F-score 03208 03756  0.3296 03071 0.4128 03040 0.2658  0.3928  0.3019 0.5519 0.3354 04128  0.3446  0.1775 0.6178

K 0.3304 0.0603  0.3266 0.3309 0.2901 0.3453 -0.0048 0.2667  0.3112 0.3327 0.2739  0.0145  0.1067  0.1966 0.4345

NMI 0.1653  0.0805 0.1637 0.1656 0.1374 0.1560 0.0206  0.0999  0.1088 0.1171 0.0964  0.0050  0.1147  0.0935 0.2220

RI 0.5300 0.3536  0.5313 0.5224 0.4868 0.5522 0.3516  0.5531  0.5358 0.5712 0.5653  0.3896  0.4554  0.5496 0.6359

45 F-score  0.3008 0.4307 0.3514 04026 0.4240 0.3618 0.2497  0.2695  0.3699 0.7325 0.3524  0.4128  0.3446  0.2535 0.5732

K 0.1880 0.0133  0.0185 0.1541 0.1434 0.1403 0.0071  0.1724  0.1851 0.2988 0.1843  0.0145  0.1067  0.1664 0.3443

NMI 0.1252  0.0385 0.0033 0.1241 0.0368 0.0915 0.0310  0.0770  0.0823 0.1101 0.0679  0.0050  0.1147  0.0362 0.1709

RI 0.5301  0.3404 0.5356 0.5479 0.4659 0.5498 0.3361  0.5573  0.5543 0.5524 0.5274  0.3575  0.3398  0.4888 0.6374

46 F-score 03341 0.3137 0.3215 04267 0.3665 03339 0.3321  0.3049  0.3591 0.4876 03164  0.3195 0.3137  0.3487 0.6145

K 0.1296  0.0089  0.0569 0.1365 0.0973 0.1443  0.0055  0.1013  0.1425 0.2207 0.0906  0.0131 0.0137  0.0312 0.4221

NMI 0.0266  0.0408 0.0099 0.0219 0.0353 0.0236  0.0255  0.0181  0.0219 0.0421 0.0173  0.0041  0.0426  0.0039 0.1613

RI 0.6328  0.2840  0.6250 0.6296 0.6264 0.6365 0.2579  0.2486  0.6283 0.6376 0.6270  0.5336  0.2474  0.6370 0.6526

#7 F-score 02573  0.2566  0.2476  0.2882 0.2917 0.2580 0.2500  0.2500  0.2448 0.4672 0.2427  0.2778  0.2500  0.2361 0.4444

K 0.1542  0.0185 0.0745 0.0972 0.1389 0.1185 0.0093  0.0015  0.0764 0.1884 0.0676  0.0741 0.0000  0.1481 0.2593

NMI 0.0558 0.0372  0.0161 0.0349 0.0635 0.0468 0.0468  0.0090  0.0175 0.0414 0.0149  0.0370  0.0000  0.0527 0.1003

RI 0.5915  0.2706  0.6255 0.6264 0.6256 0.6317 02579  0.2474  0.6262 0.6284 0.6249 03870  0.2474  0.6283 0.6406

4 F-score 02563 0.2472  0.2528 0.1806 0.3160 0.2403  0.2535  0.2500  0.2490 0.4577 0.2514  0.2535  0.2500  0.2569 0.4063

K 0.0662 0.0181 0.0602 0.0787 0.1019 0.0931  0.0093  0.0000  0.0653 0.2038 0.0731  0.0417  0.0000  0.0787 0.2083

NMI 0.0169  0.0502 0.0108 0.0203 0.0468 0.0279  0.0468  0.0000  0.0105 0.0341 0.0123  0.0250  0.0000  0.0147 0.0529

RI 0.5276  0.2727  0.6301 0.6298 0.6284 0.6318 0.2578  0.2474  0.6300 0.6302 0.6248  0.2918  0.2474  0.6262 0.6448

49 F-score 02507 0.2507 0.2576  0.2986 0.2882 0.2583  0.2465  0.2500  0.2646 0.4471 0.2556  0.2361 0.2500  0.2396 0.4653

K 0.0667 0.0167 0.1005 0.1296 0.0741 0.1130  0.0139  0.0000  0.1014 0.2822 0.0806  0.0231  0.0000  0.0787 0.2870

NMI 0.0210  0.0390  0.0271 0.0354 0.0468 0.0266 0.0466  0.0000  0.0240 0.0607 0.0173  0.0392  0.0000  0.0197 0.0942

RI 04972  0.4959 04977 0.4964 0.5048 0.4968 0.4959  0.4963  0.5053 0.5652 0.5049  0.4958  0.4958  0.5098 0.5518

#10 F-score 04975 0.5033 0.5150 0.5167 0.5667 0.5050 0.5083  0.4944  0.5025 0.5648 0.4825  0.5000  0.5000  0.4167 0.6667

K 0.0417  0.0100  0.0500 0.0333 0.1333 0.0400 0.0167 0.0222  0.1183 0.1122 0.1050  0.0000  0.0000  0.1667 0.3333

NMI 0.0021  0.0162 0.0028 0.0008 0.0318 0.0016 0.0318  0.0007  0.0139 0.0154 0.0144  0.0000  0.0000  0.0209 0.0887

RI 0.4973 04972  0.5037 0.4958 0.5195 0.4959 0.4959  0.4960  0.4989 0.5541 0.4982  0.4958  0.4958  0.4959 0.5636

411 F-score 05075 0.5217 0.5017 0.5000 0.5583 0.4958 0.4917  0.5028  0.4725 0.5512 0.5050  0.5000  0.5000  0.4917 0.6833

K 0.0417  0.0467 0.1233  0.0000 0.2167 0.0117 0.0167  0.0167  0.0617 0.1107 0.0567  0.0000  0.0000  0.0167 0.3667

NMI 0.0104 0.0448 0.0117 0.0000 0.0937 0.0001 0.0318 0.0165  0.0044 0.0085 0.0044  0.0000  0.0000  0.0002 0.1008

RI Avg. Rank 7.5455 11.3636 7.6364 6.7273 59091 5.3636 13.1818 9.5455  6.4545 3.0909 73636  12.6364 143636  7.5455 1.2727
# Best RI 0 0 0 0 0 0 0 0 0 3 0 0 0 0 8

F-score Avg. Rank  8.3636 83636  9.6364 6.0909 3.9091 8.1818 10.5455 9.5455 10.6364  2.0000 11.0000 89091  10.7273 10.7273 1.3636
# Best F-score 0 0 0 0 0 0 0 0 0 4 0 0 0 0 7

/ Avg. Rank 6.0909 11.7273 7.8182 6.5455 5.2727 5.7273 13.1818 10.1818  7.0000 3.1818 7.9091  12.6364 14.0909 7.6364 1.0000
# Best x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

NMI Avg. Rank 6.3636  6.4545 9.9091 7.0909 3.8182 7.1818 7.3636 10.4545 9.8182 6.0909 10.5455 12.0000 12.1818  9.6364 1.0909
# Best NMI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 10

class and the different class, which is defined as

D=3 ¥ DS e L DS,

BEY K | i YK k e €K
(18)

Further, the larger the C'D is, the easier it is for the
similarity measure to distinguish EEG data.

e Composite Indicator (CI) simultaneously considers the
self—recognition ability and class difference. Mathemat-
ically, CI = ‘K| DS e DSk. A higher CT reflects an
qualitatively outstanding similarity measure.

In a word, the higher the RI, k, F-score and NMI are, the

better the quality of clustering methods achieve. Likewise, the

higher the DA, CD and CI are, the better the ability of similarity
measure achieve.

C. Baseline Methods and Selected Similarity Measures

In order to illustrate the efficacy of ShVEEGc on EEG
clustering, we compared it with fourteen state-of-the-art EEG
time series clustering algorithms introduced in Section II. These
baseline algorithms are mainly divided into six categories: (1)
k-means-derived variants: km++ [37] and KMM [39]; (2)
feature selection-based algorithms: UDFS [40], NDFS [41] and
RUFS [42]; (3) methods based on similarity adjacency matrix:
SC [44] and HC [43]; (4) distance-based algorithms: DBA [45]
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TABLE III
REPRESENTATION ABILITY OF SIMILARITY MEASURES ON ELEVEN EEG
DATASETS WITH RESPECT TO DA,CD AND CI

Dataset Measure ED DTW COoS MK CB CL SPM NCCc

DA 1.04833  1.02245 1.09309 1.04833 1.06285 1.06945 1.05783 1.13031

#1 CD 0.03249  0.01718  0.06268 0.03249  0.03696 0.04876  0.03706  0.06796

CI 0.02289  0.01344  0.04613  0.02289  0.02309 0.03661 0.02512  0.04006

DA 1.00319  1.00164 1.00181 1.00319 1.00269 1.00334 1.00418 1.00264

#2 CD 0.00233  0.00137  0.00144  0.00233  0.00205 0.00233  0.00271 0.00187

Ccl 0.00171  0.00115 0.00114 0.00171 0.00156 0.00163  0.00176 0.00133

DA 1.15952  1.08451 1.47250 1.15952 1.14242 135750 1.30825 1.50836

#3 CD 0.10804  0.06825 0.25960 0.10804 0.10103 0.21258 0.17974 0.22684

CI 0.08485  0.05977 0.21003 0.08485 0.08187 0.17160 0.13711  0.15268

DA 1.07845 1.04589 1.12575 1.07845 1.10535 1.14729 1.02936 1.11274

#4 CD 0.04897  0.03080 0.07839  0.04897 0.04762  0.08317 0.01668 0.06426

CI 0.03297  0.02162  0.05502 0.03297 0.02379 0.05388 0.00975 0.04076

DA 1.01926  1.01369 1.03616 1.01926 1.02676 1.06436 1.01626 1.05325

#5 CD 0.01321  0.01020  0.02429 0.01321  0.01461  0.03312 0.00905 0.02872

CcI 0.00924  0.00770  0.01691  0.00924  0.00818 0.01814 0.00512 0.01631

DA 1.00878 1.00398 1.01265 1.00878 1.01113 1.02040 1.01072 1.01874

#6 CD 0.00568  0.00294  0.00871  0.00568 0.00626 0.01174 0.00640  0.01100

CI 0.00370  0.00218  0.00608 0.00370  0.00356  0.00690 0.00386 0.00658

DA 1.01534  1.00499 1.05138 1.01534 1.01710 1.05062 1.05234 1.03779

#7 CD 0.00961  0.00379  0.02164 0.00961 0.01034 0.02159 0.02171 0.01199

CI 0.00611  0.00289  0.00958 0.00611 0.00636 0.00968 0.00948 0.00394

DA 1.04145 1.01835 1.03585 1.04145 1.03773 1.03578 1.03273 1.05097

#8 CD 0.00395  0.00351 0.00543 0.00395 0.00419 0.00542 0.00542 0.00353

CI 0.01255  0.00796  0.01370  0.01255 0.01235 0.01368 0.01310 0.01308

DA 1.04257 1.03862 1.05064 1.04257 1.04242 1.04867 1.04846 1.07173

#9 CD 0.01260  0.01156  0.01503 0.01260 0.01271 0.01476  0.01432 0.01441

CcI 0.00389  0.00359  0.00469 0.00389 0.00397 0.00470  0.00444  0.00310

DA 1.02550 1.01714 1.03122 1.02550 1.02312 1.03095 1.03033 1.05087

#10 CD 0.00998  0.00835 0.01088 0.00998 0.00972  0.01036  0.00993  0.01344

CI 0.00400  0.00414  0.00391  0.00400 0.00418 0.00358 0.00335 0.00373

DA 1.02393  1.01638 1.03170 1.02393  1.02441 1.03180 1.03247 1.06046

#11 CD 0.01106  0.00856  0.01382 0.01106 0.01120 0.01388 0.01382  0.01604

CI 0.00523  0.00455 0.00622 0.00523  0.00526 0.00625 0.00607 0.00451

DA Avg. Rank 4.90909  7.90909 3.09091 5.90909 5.09091 2.63636 4.36364 2.09091
# Best DA 0 0 0 0 0 3 2 6

CD Avg. Rank 5.09091 7.81818 245455 6.09091 5.54545 2.09091 4.27273 2.63636
# Best CD 0 0 3 0 0 3 2 3

CI Avg. Rank 4.45455  7.00000 2.54545 545455 4.81818 227273 4.45455 5.00000
# Best CI 0 0 4 0 1 5 1 0

and K-SC [46]; (5) shape/shapelet-based algorithms: k-Shape
[36] and MTEEGc [14]; (6) density-based algorithms: R_SNN
[51] and R_DBSCAN [51]. In addition, we also compared
an unsupervised learning-based generative model RBM [27].
To reduce the accidental errors, all baseline algorithms are run
ten times, and the clustering results are averaged. Besides, the
parameters of the above fourteen algorithms are set as the same
as the original papers, except that for RBM, we increase the
training epochs to make it converge, and the number of clusters
is preset according to the class number of original EEG datasets.
As an essential role in EEG clustering, similarity measures
probably affect the performance of clustering algorithms, so
we also analyzed eight different similarity measures in the
experiments, including ED, DTW, COS, MK, CB, CL, SPM
and NCCc. All experiments are conducted with Matlab 2019b
on Ubuntu machines with 3.5 GHz CPU and 64 GB memory.

D. Clustering Results and Discussion

We analyze cluster performance of ShVEEGc from the view
of accuracy, consistency and correlation by using RI, F-score,
x and NMI, and compare it with fourteen baseline methods for
EEG time series clustering. The comparison results are shown
in detail in Table II (The best performing values are highlighted

in bold), which clearly demonstrates the efficacy and superiority
of ShVEEGc on EEG clustering, as it yields better RI, F-score,
x and NMI than those fourteen state-of-the-art clustering algo-
rithms. Besides, the average statistics of RI, F-score, k and NMI
also demonstrate that ShVEEGc outperforms the state-of-the-art
clustering algorithms.

Most of the fourteen methods are based on EEG-to-center
relationships, local density ratio, local relationship or global
segmentation, so they just consider the similarities between EEG
data and centers or high-density EEG clusters, while ignore
the connections to other EEG data in the same cluster or the
low-density EEG clusters. Moreover, although those methods
based on global segmentation can take into account the con-
nections of global EEG data, they ignore the value of the local
relationship. As a result, their clustering accuracy is degraded.
On the contrary, ShAVEEGc can make full use of the global
connections between EEG data and pays extra attention to the
value of local relationships, so it can yield a better clustering
result on complex EEG datasets.

E. Similarity Measure Ability Quantification and Discussion

It is generally believed that similarity measure is more
important than clustering algorithms [36], [52], but selecting
suitable similarity measure for EEG data is a crucial task. Unfor-
tunately, although many studies evaluate the quality of similarity
measures from the level of the similarity matrix, such as [15],
no relevant experiments have been carried out to illustrate the
adaptability of similarity measures to EEG datasets. In this
paper, we quantify the level of similarity matrix and analyze the
ability of various similarity measures from a numerical point
of view, i.e., DA, CD and CI. The results are shown in detail
in Table III, which demonstrates that COS, CL and NCCc have
better characterization capabilities, but it is hard to discern the
best similarity measure for EEG data since no similarity measure
can get the best average ranking on all EEG datasets.

DTW is a kind of similarity measures that is more suitable for
traditional time series, but its performance on the EEG datasets is
unacceptable. Besides, it’s very time consuming, especially for
high dimensional data, such as EEG data. NCCc is experimen-
tally regarded as a better similarity measure for EEG than DTW
thanks to its scale-and-shift invariance and low computational
complexity. However, although the time-consuming similarity
measures such as DTW and its variant cDTW perform well on
some EEG datasets, they cannot guarantee the good performance
on all EEG datasets. Actually, this kind of similarity measures
get extremely poor performance on most of EEG datasets,
see Table III. In contrast, those similarity measures with low
computational complexity such as ED, CL and COS perform
well on almost of EEG datasets.

F. Sensitivity Analysis

1) Impact of « and [3: We exploited an improved cosine
similarity modified by cross-correlation mean to measure EEG
data in the paper, which contains the displacement information
of time series in the whole time period, as (10) defined, where o
weighs cosine similarity measure and displacement information.
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Fig. 1.  The impact of o on ShVEEGe. A uniform sampling of [0, 1] is used to measure the performance of ShVEEGc.
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Fig. 2.  The impact of 8 on ShVEEGec. A uniform sampling of [0, 1] is used to measure the performance of Sh'VEEGc.
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Fig. 3. The impact of similarity measures on ShVEEGc. All the results are achieved with optimal parameters. (ED: Euclidean similarity measure; NCCc:

Normalized cross correlation; DTW: Dynamic time warping; CCOS: Conventional cosine without modification; ICOS: Improved cosine.

In this section, we discuss the impact of v on ShVEEGc for
EEG clustering. It should be noted that « is determined by
grid search because the computational cost is very low. The
results are shown in Fig. 1, which indicates that different types
of datasets or experiments on different tasks require different o
when clustering, but the datasets of the same experiment usually
share similar « (i.e., « for dataset beilll_V_s1, beilll_V_s2 and
bcilll_V_s3 are set to around 0.9). As Fig. 1 illustrates, we can
see that when only the cosine similarity measure is considered
(i.e., « = 1) or only the cross-correlation mean is considered
(i.e., a = 0), the performance of the ShVEEGc is not as good
as that with the fusion of cosine similarity and displacement
information.

As introduced before, clustering using global connections or
local relationships of EEG series alone cannot achieve good
results, especially local relationships (such as HC and density-
based clustering methods). Therefore, we introduced /3 to weigh
global connections and local relationships, see (16), and we also

discussed its impact on ShVEEGc here. The results are illus-
trated in Fig. 2, which demonstrates that similar to «, on most
EEG datasets, ShVEEGc with a compromise /3 can achieve the
best clustering performance with repect to RI, F-score, kappa,
and NMI. In other words, from the perspective of cooperative
games, the combination of collective rationality and individual
desire can achieve a better coalition.

2) Impact of Similarity Measures: As we introduced be-
fore, similarity measures play a significantly important role in
ShVEEGc, but it is difficult to choose the most suitable one for
EEG datasets from various similarity measures. Consequently,
to select the relatively applicable similarity measure for most
EEG datasets in our study, we here discussed the influence of
different similarity measures on the ShVEEGc, including Eu-
clidean similarity (ED), normalized cross-correlation (NCCc),
dynamic time warping (DTW), conventional cosine similarity
(CCOS) and improved cosine similarity (ICOS). The results are
shown in Fig. 3, which demonstrates that the ShVEEGc with
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Fig. 4. Running time comparison of different EEG time series clustering
algorithms on eleven EEG datasets.

ICOS can yield better performance compared to ED, NCCc,
DTW and CCOS for all eleven EEG datasets, even though
several criteria are not as good as Euclidean distance. Based
on a large number of experiments, we find that either similar-
ity measures or clustering algorithms can perform well on all
EEG datasets. Interestingly, the results in Fig. 3 have a great
relationship with the results in Table III. Although there are
some exceptions, they are generally consistent with each other.
In detail, ED is a kind of robust similarity measure and it can
achieve good results in most fields, which is also in keeping
with the conclusion in [53], but it is not the best choice for the
EEG dataset according to the experimental results. NCCc just
focuses on the segment with the largest sequence binding, ig-
noring the global sequence’s binding properties. Besides, DTW
minimizes sequence distance by distorting local time series. In
response to this, DTW is over-optimized and is affected by the
instability and complexity of the EEG sequence. For another
similarity measure, CCOS measures the angle information of
the space very well, but it cannot capture the information of the
global sequence displacement. As we introduced before, ICOS
considers both the spatial angle information and global sequence
displacement information of EEG data, so it can assist ShAVEEGc
to obtain better clustering performance on EEG data compared
with ED, NCCc, DTW and CCOS.

3) Execution Time: As mentioned earlier, the time complex-
ity of ShWEEGc is O(n?® + n? m?), and on large-scale datasets,
the execution time of this algorithm is mainly concentrated on
the calculation of the Shapley value. Once the primary cluster
is changed, the algorithm updates the Shapley value matrix
immediately. Of course, for the small and medium scale datasets,
ShVEEGe is very efficient. The time consumption on eleven

EEG datasets is shown in Fig. 4, which clearly indicates that
ShVEEGc runs faster than most of those fourteen baseline
algorithms. Among these methods, km++, SC, HC, R_SNN
and R_DBSCAN are all efficient algorithms because of their
low complexity of similarity measures and efficiently simple
clustering strategy. In addition, UDFS, NDFS, RUFS, k-shape,
DBA, K-SC, and MTEEGc take a large amount of running time
to optimize the objective function to seek optimal cluster centers
and extract features, so they have higher time consumption. Al-
though ShVEEGec is relatively slow on large-scale datasets (i.e.,
dataset bcilll_V_s1, bcilll_V_s2 and bcilll_V_s3) according
to the analysis of time complexity, in fact, the running time of
ShVEEGc is less than that of NDFS, RUFS, DBA and MTEEGc,
and the clustering accuracy and quality are significantly im-
proved. Besides, the ShvEEGc algorithm can be potentially well
applied to real-time EEG analysis. After forming stable coop-
erative game coalitions, we only need to calculate the Shapley
value of real-time EEG to cluster it, which only requires O(n)
time, where n represents the number of EEG.

VI. CONCLUSION AND FUTURE WORK

Inspired by cooperative game theory and Shapley value,
we proposed an EEG clustering method in this study, called
ShVEEGc. First, we transform EEG clustering into a cooperative
game and prove its convexity. Then we calculate the Shapley
values of EEG data based on an improved cosine similarity
measure modified by cross-correlation and finally cluster the
EEG with the improved Shapley value. ShVEEGc avoids the
calculation of cluster centers and forms stable and tight clusters
through the internal relationship between EEG data. Finally,
we compare ShVEEGc with fourteen state-of-the-art EEG time
series clustering methods on eleven real-world EEG datasets
to illustrate the effectiveness and superiority of ShVEEGc. In
addition, due to the lack of similarity measure research in the
field of EEG clustering, we design three indicators to quantify
the representation ability of similarity measures on EEG data.
The results also demonstrate that cosine distance, correlation
and normalized cross-correlation have good characterization
capabilities.

To be honest, the computational efficiency of the S'VEEGc
algorithm is not outstanding on large-scale EEG datasets for
now, so we plan to improve its efficiency from two aspects in our
future work: 1) considering more efficient data linking methods,
such as tree structure, and 2) adopting adaptive strategies [61],
[62]. Besides, in the future, we will try to evaluate and improve
the efficacy of our method on higher spatial-resolution EEG
datasets that recorded by more channels, and we will also plan to
apply ShVEEGc to real-world EEG clustering and other related
applications, such as ECG and EMG clustering.
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